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Abstract
The main goal of this review is to compare different approaches to constructing
the geometry associated with a Hecke type braiding (in particular, with that
related to the quantum group Uq(sl(n))). We place emphasis on the affine
braided geometry related to the so-called reflection equation algebra (REA).
All objects of such a type of geometry are defined in the spirit of affine algebraic
geometry via polynomial relations on generators. We begin by comparing the
Poisson counterparts of ‘quantum varieties’ and describe different approaches
to their quantization. Also, we exhibit two approaches to introducing q-analogs
of vector bundles and defining the Chern–Connes index for them on quantum
spheres. In accordance with the Serre–Swan approach, the q-vector bundles
are treated as finitely generated projective modules over the corresponding
quantum algebras. Besides, we describe the basic properties of the REA
used in this construction and compare different ways of defining q-analogs of
partial derivatives and differentials on the REA and algebras close to them.
In particular, we present a way of introducing a q-differential calculus via
Koszul type complexes. The elements of the q-calculus are applied to defining
q-analogs of some relativistic wave operators.

PACS number: 02.40.Gh

1. Introduction

By a braided geometry we mean a sort of noncommutative geometry related to a braiding
which is defined as follows. Let V be a finite-dimensional vector space over the ground field
K (of complex numbers C or real numbers R). An operator

R : V ⊗2 → V ⊗2 (1.1)

is called a braiding provided it satisfies the following relation on the space V ⊗3:

R12R23R12 = R23R12R23. (1.2)
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Here we use the standard notations R12 = R ⊗ Id and R23 = Id ⊗ R, where Id is the
identity operator on the space V . In fact, relation (1.2) has the meaning of a very special
representation of the Artin braid group. Besides, this relation is equivalent to the quantum
Yang–Baxter equation and often is called the Yang–Baxter equation too.

Let us give a few examples of solutions to the Yang–Baxter equation. The first example
is the classical flip σ which transposes any two elements σ(x ⊗ y) = y ⊗ x, x, y ∈ V . The
second example is related to a Z2-graded vector space V = V0̄ ⊕ V1̄ where the flip is replaced
by its super-analog σ(x ⊗ y) = (−1)xyy ⊗ x. Here x and y are homogeneous elements of V

and x, y ∈ Z2 are their parities. Emphasize that all super-flips (the classical flips included)
are involutive, i.e. σ 2 = Id.

Other known examples come from the quantum groups (QG) Uq(g) (see [CP]). Consider a
finite-dimensional Uq(g)-module V and take the image of the universal R-matrix in End(V ⊗2).
Then, the product of this image and the flip σ gives a solution to (1.2).

If g = sl(n) and V is the first fundamental Uq(sl(n))-module (q ∈ K is a fixed non-zero
number), then the corresponding braiding R satisfies the second degree equation

(R − q Id)(R + q−1 Id) = 0. (1.3)

In this case, the representation of the group algebra of the Artin braid group is reduced to the
representation of the Hecke algebra. For this reason, a braiding R satisfying the additional
condition (1.3) is called the Hecke symmetry.

If an algebra g belongs to the series Bn,Cn or Dn, then the corresponding braiding
R : V ⊗2 → V ⊗2, where V is also the first fundamental g-module, satisfies a third
degree equation. We call it a Birman–Murakami–Wenzl (or BMW) symmetry. These BMW
symmetries as well as the aforementioned Hecke symmetries are deformations of the classical
flips. By using the so-called gluing procedure (see [G2, MM, GPS3]) it is possible to
construct the Hecke symmetries which are deformations of the super-flips. In order to point
out the braidings and symmetries which are deformations of the classical flips we call them
quasiclassical. Note that there exists a big family of other braidings which are not deformations
of either classical or super-flips.

Given a braiding R (quasiclassical or not), the following very natural question arises:
which associative algebras can be connected with it? The simplest examples are q-analogs of
the symmetric Sym(V ) and skew-symmetric

∧
(V ) algebras on the space V endowed with a

Hecke symmetry (1.1). They are respectively defined as follows:

Symq(V ) = T (V )/〈Im(q Id − R)〉,
∧

q
(V ) = T (V )/〈Im(q−1Id + R)〉. (1.4)

Hereafter, T (V ) stands for the free tensor algebra of a given space V and 〈S〉 is the two-sided
ideal generated by a subset S ⊂ T (V ). As follows from the results of [G2], these algebras
have a good deformation property. For a quasiclassical Hecke symmetry R this means that
for a generic q and all positive integers k, we have

dim Sym(k)
q (V ) = dim Sym(k)(V ), dim

∧k

q
(V ) = dim

∧k
(V ), (1.5)

where Sym(k)
q (V ) and

∧k
q(V ) are the kth-order homogeneous components of the algebras

Symq(V ) and
∧

q(V ), respectively.
If R is a BMW symmetry, q-analogs of symmetric and skew-symmetric algebras of the

space V can be introduced as well3.
3 Observe that, in general, for an arbitrary braiding R : V ⊗2 → V ⊗2 the ‘R-analogs’ of the symmetric Sym(V ) and
skew-symmetric

∧
(V ) algebras are not defined. The definition of these algebras as the quotients T (V )/〈Im(Id−R)〉

and T (V )/〈Im(Id + R)〉) respectively is acceptable only if 1 and −1 are the eigenvalues of R (otherwise these
quotients are trivial). But, in general, even under this condition the good deformation propriety of the algebras
involved (assuming R to be quasiclassical) is not ensured.
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Two other well-known examples belong to the class of the so-called quantum matrix
algebras. (All algebras below are assumed to be unital.) These are the RTT algebra and the
reflection equation algebra (REA). The RTT algebra is an associative algebra generated by
formal indeterminates T

j

i , 1 � i, j � n = dim V , subject to the system of relations [FRT]

R12T1T2 − T1T2R12 = 0, (1.6)

which is the compact notation for the matrix equation

R(T ⊗ Id)(Id ⊗ T ) − (T ⊗ Id)(Id ⊗ T )R = 0.

Here T = ∥∥T j

i

∥∥ is the n × n quantum matrix with noncommutative entries T
j

i .

The REA is another associative algebra with formal generators L
j

i , 1 � i, j � n = dim V

subject to the relations

R12L1R12L1 − L1R12L1R12 = 0, L1 = L ⊗ Id, (1.7)

where L = ∥∥Lj

i

∥∥. Upon replacing L1 in this relation by L2 = Id ⊗ L we get a similar algebra
which will be referred to as the REA of second type.

Besides these two examples, there are other quantum matrix algebras associated with
pairs of compatible braidings. We discuss them in section 3.

Also, note that the reflection equation (with a parameter) appeared in connection with the
theory of integrable models with a boundary in [C] (see also [KS]).

If R is a quasiclassical Hecke symmetry, then the RTT algebra and the REA have the good
deformation property and can be treated as two different q-analogs of the symmetric algebra
Sym(End(V )), where End(V ) stands for the vector space of endomorphisms of the space V .
In this case, we denote the algebras (1.6) and (1.7) as Symq(T ) and Symq(L), respectively.

Here T = span
(
T

j

i

)n
i,j=1 and L = span

(
L

j

i

)n
i,j=1 are the linear spans of the corresponding

generators. The q-analog
∧

q(T ) (resp.,
∧

q(L)) of the skew-symmetric algebra
∧

(End(V ))

with the good deformation property can also be associated with any quasiclassical Hecke
symmetry (see section 7).

Being equipped with the usual matrix coproduct, the algebras Symq(T ) and Symq(L)

become bialgebras (in the latter case braided). Besides, if R is an even4 Hecke symmetry, then
in each of these algebras there is a q-analog of the determinant of the matrix T or L which is
the group-like element with respect to the matrix coproduct. Let detqT (resp., DetqL) be this
analog in the algebra Symq(T ) (resp., Symq(L)).

Assuming detqT to be central (DetqL is always central) we can define the quotients

Symq(T )/〈detqT − 1〉 and Symq(L)/〈DetqL − 1〉.
These quotients are the Hopf algebras (in the latter case the braided Hopf algebra) and can be
treated as two different deformations of the algebra K[SL(n)], provided R is a quasiclassical
Hecke symmetry. The Hopf structure in the above quotient of RTT algebra first appeared in
papers of the Leningrad mathematical school (see [FRT] and references therein) and afterwards
was formalized by Drinfeld [Dr1]. The braided Hopf structure in the above quotient of the
REA was discovered by Majid (see [M4] and references therein).

Note that if G is a group from the series Bn,Cn or Dn, then there exist similar deformations
of the algebra K[G]. They can also be realized as appropriate quotients of the RTT algebra
and of the REA, respectively. In the following, the notation Kq[G] stands for the quantum
deformation of the algebra K[G] which is the mentioned quotient of the RTT algebra.

In the present review, we review different ways of introducing quantum (braided) analogs
of coordinate algebra of an affine regular variety and compare the roles of the RTT algebra and

4 This means that it is skew invertible (see section 3) and the skew-symmetric algebra
∧

q (V ) is finite dimensional.
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the REA in braided geometry. Also, we exhibit a regular way of defining q-analogs of some
relativistic wave operators (Laplace, Maxwell, Dirac ones) on a q-analog of the Minkowski
space algebra.

We are mainly interested in a braided version of affine algebraic geometry. This means
that all algebras we are dealing with are introduced by means of some polynomial relations
on their generators. The coefficients of these relations analytically depend on the deformation
parameter q which can be specialized. The RTT algebra, the REA, their quotients mentioned
above and their skew-symmetric counterparts are examples of such algebras.

Other examples are provided by the so-called q-(quantum, braided) varieties. The
corresponding algebras arise from a quantization of commutative algebras of functions on
some classical varieties. A typical example of a classical variety to be quantized is an orbit
O ⊂ g∗ of a semisimple element a ∈ g∗ (a semisimple orbit for shot), where g is a simple Lie
algebra (our main example is sl(n)) corresponding to a complex connected Lie group G. Let
K[O] be the coordinate algebra of the affine variety O ⊂ g∗.

Another way to realize the above coordinate algebra is based on the fact that the orbit O
is isomorphic (as a G-set) to a coset G/Ga , where Ga ⊂ G is the stabilizer of the element a.
Via the map dual to the projection G → O we can realize the space of functions on O as a
subalgebra of K[G] consisting of functions such that f (xb) = f (x), where x ∈ G, b ∈ Ga .
Abusing the notations we denote this subalgebra by K[G/Ga].

In general, upon deforming the algebras K[O] and K[G/Ga], we get non-equivalent
quantum algebras. Moreover, if G/Ga is not a symmetric homogeneous space, the algebra
K[G/Ga] has a large family of quantum deformations. Any algebra A of this family is a
covariant Uq(g)-module and its product (denoted ◦) is coordinated with Uq(g) action in the
following sense:

X(a ◦ b) = ◦(X1(a) ⊗ X2(b)), ∀a, b ∈ A, X ∈ Uq(g) (1.8)

where �(X) = X1 ⊗ X2 is the Sweedler’s notation for the coproduct in the QG Uq(g).
In the following section, we consider semiclassical counterparts of the above quantum

algebras on semisimple orbits5. Following [DGS] we show that on a generic semisimple orbit
O ⊂ g∗ there is a family of G-covariant non-equivalent Poisson structures. This family is
parameterized by a variety of dimension equal to the rank of G excluding some subvarieties
of smaller dimensions. However, in general these Poisson structures can be quantized only
formally (i.e. the products in the corresponding quantum algebras are represented by series
whose convergence is disregarded). One of such structures, the so-called reduced Sklyanin
bracket, can be quantized in terms of ‘quantum cosets’. More precisely, the resulting quantum
algebra (denoted by Kq[G/Ga]) is treated as a subalgebra of the algebra Kq[G] similarly to
the classical pattern.

Nevertheless, if G = SL(n), then on any semisimple G-orbit there is a Poisson pencil
whose quantization can be described in the spirit of affine algebraic geometry. Moreover, it is
a restriction of a Poisson pencil defined on the vector space gl(n)∗. The latter Poisson pencil

{ , }a,b = a{ , }PL + b{ , }REA (1.9)

is generated by the linear Poisson–Lie bracket { , }PL and the Poisson counterpart of the
standard6 REA denoted by { , }REA. It is known that the bracket { , }PL can be restricted to any
orbit in g∗ for any Lie algebra g. We call this restricted bracket the Kirillov–Kostant–Souriau
(KKS) one and denote it by { , }KKS.

5 We call the corresponding Poisson brackets G-covariant ones. We reserve the term ‘a Poisson–Lie bracket’ (which
is often used for these brackets) for the linear Poisson bracket on the space g∗.
6 In the following, we also use the term standard for the Hecke symmetry (and other objects) related to the QG
Uq(sl(n)).
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The fact that the bracket { , }REA can also be restricted to any orbit in gl(n)∗ was proved
by Donin [D]. We would like to emphasize a great contribution to this area made by our friend
Donin who passed away 4 years ago. Being an expert in deformation theory, he studied many
types of Poisson brackets (those on homogeneous spaces included) and their quantizations.

Thus, the whole pencil (1.9) can be restricted to any orbit in gl(n)∗, and consequently,
to any orbit in sl(n)∗. Observe that the quantum counterpart of the Poisson pencil (1.9) can
be defined by polynomial relations which are a slight modification of those for the standard
REA. Let us describe the quantum algebra explicitly.

Given a skew-invertible symmetry R, we call the modified REA (mREA) the algebra
defined by the following system of quadratic–linear relations on its generators L

j

i :

R12L1R12L1 − L1R12L1R12 − h̄(R12L1 − L1R12) = 0, (1.10)

where L = ∥∥Lj

i

∥∥. In what follows, we denote the mREA by L(Rq, h̄).
Note that for the standard braiding R the algebra L(Rq, h̄) transforms into the enveloping

algebra U(gl(n)h̄) as q → 1. (Hereafter, gh̄ stands for the Lie algebra which differs from the
Lie algebra g by the factor h̄ in the Lie brackets.) As a consequence, in the standard case the
Poisson pencil (1.9) turns out to be the semiclassical counterpart of the two parameter algebra
L(Rq, h̄).

Comparing relations (1.7) and (1.10) we can also see that for the standard Hecke symmetry
R the following holds Symq(L) = L(Rq, 0). In what follows, the algebra L(Rq, 0) will also be
denoted by L(Rq). Note that the algebra L(Rq) is actually isomorphic to L(Rq, h̄) if q �= ±1
(see section 3). But since the isomorphism breaks at q = ±1 we prefer to distinguish these
algebras and to use different notations for them.

Now, go back to the restriction of the Poisson pencil (1.9) to a given semisimple orbit O.
We want to represent the result of its quantization as a proper quotient of the two-parameter
algebra L(Rq, h̄). To this end, we have to find ‘the coordinate ring of the corresponding
quantum orbit’. This problem is rather subtle if the orbit O is not generic, i.e., the eigenvalues
of the corresponding element a ∈ O are not pairwise distinct. As was observed in [DM], the
degeneracy of the eigenvalues disappears after quantization (see also [GS2], remark 18). We
do not consider such orbits here. Our main examples—the hyperboloids (spheres)—are the
generic orbits and, at the same time, these orbits are symmetric due to their low dimension.

Note that any symmetric orbitO possesses an additional property: all G-covariant brackets
on such an orbit O originate from the restriction of the Poisson pencil (1.9) to it. Thus, in this
case any quantum coset algebra Kq[G/Ga] can also be realized as a quotient of the mREA.
For example, the quantum sphere algebra can be introduced as a quantum coset Kq[SU(2)/H ]
and as a quotient of the mREA (see section 6). Note that the popular Podleś quantum sphere
algebra [P1] is just such a quotient that is written in terms of generators different from ours and
endowed with an involution (conjugation) possessing classical properties. However, contrary
to the quantum hyperboloid algebra, the Podleś quantum sphere cannot be realized as a real
algebra even if the parameter q is real. We discuss the problem of an appropriate definition of
an involution in a quantum algebra in sections 5 and 6.

Nevertheless, even on symmetric orbits different ways of introducing quantum algebras
give rise to different types of ‘quantum geometry’. In section 6, we compare these approaches
on an example of a quantum sphere (hyperboloid). In particular, we describe two ways
of constructing quantum analogs of line bundles and computing the Chern–Connes index
for them. Recall that according to the Serre–Swan approach any vector bundle over a
regular affine algebraic variety or a smooth compact one can be realized as a projective
module over its coordinate algebra (all projective modules are assumed to be finitely
generated). The Chern–Connes index Ind(π, e) is introduced via a pairing of a representation
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π of a given noncommutative algebra A and a projective A-module M ∼= eA⊕n (or
M ∼= A⊕ne), where e ∈ Matn(A) is the corresponding idempotent. This pairing is defined as
follows:

Ind(π, e) = Tr(π(Tr(e))). (1.11)

In [HM] a family of idempotents over the algebra Kq[SU(2)/H ] was constructed. Besides,
one of these idempotents was paired with an infinite-dimensional representation of the quantum
sphere algebra taken from [MNW]. The quantum index thus calculated equals the value of
the classical index on the corresponding line bundle.

Another approach was suggested in [GLS2] (also, see [GS2]) where a family of
idempotents over a q-hyperboloid algebra was constructed, the q-hyperboloid being realized as
a quotient of the algebra L(Rq, h̄). In contrast with [HM] these idempotents were constructed
via a series of the Cayley–Hamilton identities valid for some matrices with entries from the
mREA (in particular, for the matrix L entering the definition of the mREA). Such type identities
were found in [GPS1, GPS2] for the quantum matrix algebras associated with a large class
of general type Hecke symmetries. However, only for the REA (modified or not) the matrix
powers in the Cayley–Hamilton identities have the usual sense (see section 3).

The second ingredient coming in the index formula is a representation. The problem of
constructing representations of the REA (mainly, in the standard case) was considered in a
series of papers (see, for example [K, Mu1, KSS, DKM, DS, S]). Note that in the standard
case, the REA has some specific properties simplifying the problem (see section 5). A general
approach to constructing the finite-dimensional, R-invariant7 (or equivariant) representations
was suggested in [GPS3]. In that paper, a quasitensor category (called Schur–Weyl) of the
REA representations was defined for the REA associated with a skew-invertible general type
Hecke symmetry R.

An important peculiarity of this category is a modification of the notion of the trace. For
the quantum matrices the usual trace must be replaced by the categorical (or quantum) trace
TrR (see sections 3 and 4 for detail). In particular, this new trace enables us to define the
procedure of sl-reduction for the REA and its representations. In a sense, this procedure is
analogous to the classical passage from U(gl(n)) to U(sl(n)) which is a motivation for the
term ‘sl-reduction’.

Given a representation of the algebra L(Rq, h̄) belonging to the Schur–Weyl category and
a projective module from the aforementioned family, the q-index is defined in [GLS2] by a
formula analogous to (1.11) but both usual traces coming in it are replaced by the quantum
trace TrR . As a result, the q-index equals a q-integer. This is an intrinsic property of the
braided affine geometry: all the numerical characteristics (dimensions, indexes, etc) of its
objects (algebras, modules, etc) become q-numbers.

Another basic feature of the braided affine geometry is a modification of the notion of a
Lie algebra and a vector field. In the Uq(g) case the problem of defining a quantum (braided)
Lie algebra can be formulated as follows. We look for a deformation of the Lie bracket
[ , ] : g⊗2 → g such that the deformed bracket [ , ]q is a Uq(g)-covariant map (we assume the
space g to be endowed with a Uq(g) action which is a deformation of the usual adjoint one)
and the corresponding enveloping algebra is a quadratic–linear one and it possesses a good
deformation property. This means that it is canonically isomorphic to its associated graded
algebra8 and the latter one has a good deformation property in the sense of definition based

7 In the Uq(sl(n)) case, this means that the maps L(Rq, h̄) → End(V ) are Uq(sl(n))-morphisms.
8 We refer the reader to [PP] where a general form of the Jacobi identity and that of the PBW theorem ensuring such
an isomorphism are presented. Note that this Jacobi identity has nothing in common with that from section 5 which
enables us to define the adjoint representation.
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on formula (1.5). Also, we are interested in finding q-analogs of axioms of usual (or super-)
Lie algebras.

There are known numerous attempts [W, DGHZ, DGG, LS, M2, GM] to define the
quantum (braided) analogs of a Lie algebra (often without requiring the good deformation
property for the ‘enveloping algebra’). It turned out [GPS3] that for classical simple Lie
algebras the braided deformations with the desired properties exist only for the Lie algebra
g = sl(n). Also, such a deformation can be defined for the general linear algebra g = gl(n).
Moreover, a braided analog of the Lie algebra gl(n) can be associated with any skew-invertible
Hecke symmetry R and the role of the corresponding enveloping algebra is played by the mREA
related to the symmetry R. Note that although the mREA had been known for a long time, a
‘braided Lie algebra’ was extracted from this algebra only in [GPS3].

By using this braided Lie algebra we can define a q-analog of the adjoint action on the
space L in the natural way: adqx(y) = [x, y]q,∀x, y ∈ L. In the Uq(sl(n)) case, it is a
deformation of the usual adjoint action. In order to define braided analogs of vector fields
arising from the usual adjoint action we should extend this q-adjoint action to the higher
components of the algebra L(Rq) (or of SL(Rq) if we deal with an sl-reduced algebra). For
usual or super-algebras this can be done by means of the coproduct acting on the generators
in the additive way: �(X) = X ⊗ 1 + 1 ⊗ X. This leads to the classical (or super-) Leibnitz
rule for the vector fields. The above coproduct (properly extended to higher degree elements)
is still valid for the mREA related to an involutive symmetry R : R2 = Id.

However, if a symmetry R coming in the definition of the REA is not involutive, this
method of constructing the ‘braided vector fields’ fails. Fortunately, in the algebra L(Rq, 1)

(we put h̄ = 1 for the sake of concreteness, since algebras L(Rq, h̄) are isomorphic for all
h̄ �= 0) there exists a coproduct which endows it with a braided bialgebra structure. Note
that in the Uq(sl(n)) case it is also a deformation of the classical coproduct. Thus, using
this coproduct we can define the braided vector fields on the algebra L(Rq) or its sl-reduced
counterpart SL(Rq) which are analogs of the vector fields arising from the usual adjoint
action.

We call these braided vector fields tangent since their classical counterparts are tangent to
orbits in sl(n)∗. In the case n = 2 the braided tangent vector fields are subject to the relation
analogous to xX + yY + zZ = 0 which is valid for the infinitesimal rotations X, Y,Z in the
space R

3, x, y, z being R
3 coordinates. Note that the vector fields X, Y,Z have the meaning

of the angular momentum components.
In the present review, we use a different method of defining the tangent braided vector

fields. This method is based on a conjecture that any element f ∈ L(Rq) or f ∈ SL(Rq) has
a canonical (i.e. completely q-symmetrized) form. If it is so, the action of a braided vector
field on the element f can be defined without using any form of the Leibnitz rule. Namely,
it suffices to apply the braided vector field to the first factors of the summands constituting
the canonical form of f (with a subsequent renormalization). This method is close to the
technique used in [G3] for constructing Koszul type complexes (see section 7). Note that
these complexes are usually employed in the theory of quadratic algebras [Ma, PP]. In a
similar manner, using the aforementioned conjecture we introduce braided analogs of partial
derivatives.

In the last section, we use the braided analogs of the partial derivatives and the tangent
vector fields in order to define q-analogs of basic wave operators on the q-Minkowski space
and q-hyperboloid algebras. A q-analog of the Minkowski space algebra was introduced
in the early 1990s in [CSSW1, CSSW2, SWZ, OSWZ]. Initially, this algebra was defined
via q-analogs of spinors. Lately, it was treated as a particular case of the REA [M3, Me1,
MMe, AKR].

7
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In section 8, we analyze other possible candidates for the role of the q-Minkowski space
algebra assuming them to be quadratic and Uq(sl(2))-covariant9. We introduce a truncated
REA Kq[R4] which differs slightly from (1.7) and in the Uq(sl(2)) case we treat it as the
q-Minkowski space algebra.

Also, q-analogs of the Laplace10 and Dirac operators on the q-Minkowski space and
quantum sphere algebras were considered in a number of papers [Me2, BK, P4, PS] and others.
In fact, both operators arise from the quadratic Casimir element Cas = TrqL2 which is central
in the algebra Kq[R4]. Passing to the sl-reduced algebra Kq[R3] we get the reduced Casimir
element Cassl . Then we obtain the q-Laplace operator on the algebra Kq[R3] (resp., Kq[R4])
by replacing the algebra generators in the Casimir element Cassl (resp., Cas) by appropriate q-
derivatives. In order to get the q-Laplace operator on the q-sphere (q-hyperboloid) we replace
the generators of the algebra Kq[R3] in Cassl by braided analogs of some tangent vector fields.
The element Cassl is also involved in the construction of q-Dirac operator on the algebras in
question (see section 8).

Particular cases of such tangent vector fields are infinitesimal (hyperbolic) rotations whose
q-analogs are often introduced via their relations with QG Uq(sl(2)) in the spirit of [FRT]
or [LS] (we discuss such an approach in section 4). In our construction of q-derivatives or
braided tangent vector fields we use a technique of Koszul type complexes which is applicable
in a much more general context. An advantage of this approach becomes more evident when
we pass to the quantum sphere (hyperboloid) on which the analogs of tangent and cotangent
bundles are realized as one-sided projective modules. These modules play the crucial role in
our defining the q-Maxwell operator on a quantum hyperboloid.

The first attempt to construct an algebra of differential forms on quantum spheres is due
to Podleś [P2, P3]. However, his approach, based on the Leibnitz rule, leads to an algebra with
non-classical dimensions on a generic quantum sphere. There is known another approach to
constructing the differential calculus on a quantum sphere which uses q-analogs of complex
coordinates z and z̄ in the spirit of projective geometry (see, for instance [CHZ, SSV]).

Restricting ourselves to the braided affine geometry we disregard this approach as well
as that based on C∗-algebras which involves a big amount of functional analysis. We refer
the reader to the paper [A] which reviews some aspects of quantum geometry essentially
based on the RTT algebra and using different tools of noncommutative geometry due to
Connes. In contrast, our approach is completely algebraical: all ‘varieties’ are braided affine,
all representations are finite dimensional. Mainly dealing with the REA algebra, playing the
crucial role in braided affine geometry, we exhibit recent results and constructions which are
covered neither by the review [M3] nor by the monograph [M4].

To complete the Introduction, we would like to mention the approach based on the so-
called Heisenberg double and going back to [W]. It deals with the algebra Kq[GL(n)]⊗∧q(L)

treated as a q-differential algebra on the group GL(n). The difficulties of such a differential
calculus are analyzed in numerous papers. We refer the reader to the recent paper [IP2] where
an application of this approach to the so-called quantum top is exhibited.

Our paper is organized as follows. In the following section, we describe semiclassical
(i.e. Poisson) counterparts of quantum algebras related to standard Hecke symmetries. In
section 3, we recall a general method of introducing the quantum matrix algebras (the REA
and RTT algebras included) which is based on the notion of compatible braidings. Also, there

9 So, according to the common viewpoint the complex QG Uq(sl(2)) is treated to be the quantum analog of the
Lorenz group. In this connection, we would like to mention an original approach of [Dob] where a q-Minkowski
space is SUq(2, 2)-covariant.
10 Note that we employ the term ‘Laplace operator’ in a large sense by admitting that the metric coming in its definition
can be indefinite.
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we reproduce the Cayley–Hamilton identity valid for the quantum matrix algebras related to
the Hecke symmetries of general type and we discuss some special properties of the REA.

In section 4, we compare the methods of constructing the (m)REA representation theory
in general and in the standard cases. Also, we exhibit the coproduct which plays the central
role in constructing the aforementioned Schur–Weyl category. In section 5, we present a
treatment of the mREA as an enveloping algebra of a braided Lie algebra and discuss the
problem of defining an involution (conjugation) in this ‘enveloping algebra’.

In section 6, we compare different ways of defining q-analogs of line bundles on a quantum
sphere (hyperboloid) and the Chern–Connes index for them. In section 7, we introduce some
elements of differential calculus on quantum algebras based on the Koszul type complexes. In
section 8, we apply this technique in order to define the braided analogs of partial derivatives
and other vector fields. Then we introduce the q-analogs of basic wave operators on the
q-Minkowski space and q-hyperboloid space algebras.

2. Poisson counterparts of quantum varieties

In this section, we consider Poisson counterparts of quantum varieties. By a quantum variety
algebra we mean a Uq(g)-covariant algebra which is a deformation of (function algebra of)
a usual homogeneous G-space. Here G is a classical matrix connected complex group (so,
K = C), g is its Lie algebra and Uq(g) is the corresponding quantum group. Besides, we
assume that a triangular decomposition of the Lie algebra g is fixed.

We consider a homogeneous G-space of the form G/G� where G� is the Levi subgroup
corresponding to a subset � of the set of simple positive roots. The Lie algebra g� = Lie(G�)

(called the Levi subalgebra) is generated by the Cartan subalgebra h ⊂ g and by the root
vectors E±α corresponding to the roots ±α for all α ∈ �. Besides, we assume 〈Eα,E−α〉 = 1
where 〈 , 〉 is the pairing defined by the Killing form.

The coset G/G� is isomorphic (as a G-set) to an orbit O ⊂ g∗ of a semisimple element
of the space g∗ (a semisimple orbit in short). Consequently, we identify the algebra K[O] and
a subalgebra in the algebra K[G].

Consider an example of the above isomorphism for the matrix group G = SL(2)

L ∈ SL(2) ⇔ L =
(

a b

c d

)
, ad − bc = 1, a, b, c, d ∈ K.

In this simple case the only Levy subgroup different from SL(2) itself is the Cartan subgroup
H consisting of all diagonal matrices with the unit determinant. We put σ(L) = (x, h, y)

where (x = ab, h = −ad − bc, y = −cd). Note that σ(L) = σ(Lg) for g ∈ H .
Thus, the functions x, y, z are defined on the coset SL(2)/H . With respect to the left
SL(2)-action L → gL, g ∈ SL(2), the space of vectors (x, h, y) becomes a spin 1 SL(2)-
module. We treat the vector (x, h, y) as an element of sl(2)∗ ∼= sl(2). Since the quantity
h2 + 4xy = (ad − bc)2 = 1 is stable under the left SL(2)-action, the image of the map σ

belongs to a hyperboloid passing through the point (0, 1, 0).
Now, consider the Sklyanin bracket { , }K[G] defined on the space K[G] as follows:

{f, g}K[G] = ◦ (ρ⊗2
l (r−)(f ⊗ g) − ρ⊗2

r (r−)(f ⊗ g)
)
, f, g ∈ K[G], (2.1)

where ◦ is the ordinary pointwise product in the algebra K[G], r− = (r12 − r21) ∈ g⊗2

is the skew-symmetrized classical r-matrix (up to a factor 1/2), and ρl (resp., ρr ) is the
representation g → Vect(G) of the algebra g by the right-invariant (resp., left-invariant)
vector fields. Namely,

ρl(X)f (a) = ∂tf (etXa)|t=0, ρr(X)f (a) = ∂tf (ae−tX)|t=0 ∀X ∈ g, a ∈ G.

9
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We assume the classical r-matrix r to be chosen in such a way that

r− =
∑
α∈	+

(Eα ⊗ E−α − E−α ⊗ Eα),

where 	+ is the set of positive roots and the symmetrized part r+ = (r12 + r21) ∈ g⊗2 is the
split Casimir element

r+ =
∑
α∈	+

(Eα ⊗ E−α + E−α ⊗ Eα) + · · · ,

where we omit the terms belonging to h⊗2.
It is well known that the Sklyanin bracket is a Poisson one and it is compatible with

the standard matrix coproduct in the space K[G] in the sense of formula (2.2) where we put
M = G.

If M is a homogeneous G-space, the space K[M] can be equipped with a coaction
� : K[M] → K[M] ⊗ K[G]. We say that a Poisson bracket { , }K[M] defined in the space
K[M] is G-covariant if

�{f, g}K[M] = {�(f ),�(g)}K[M]⊗K[G], ∀f, g ∈ K[M] (2.2)

where the bracket in the right-hand side is defined via the product of the Poisson structures.
A Poisson bracket on the space K[M] is called G-invariant if the operator f (x) →

f (gx), g ∈ G commutes with the bracket. It is easy to see that the sum of a G-invariant
bracket and a G-covariant one is again a G-covariant bracket.

Remark 1. Hereafter, we use the notion of a ‘bracket’ in a large sense. By a bracket we
mean an operator { , } : K[M]⊗2 → K[M] which is bilinear, skew-symmetric and satisfying
the Leibnitz rule (the Jacobi identity is not required). The notion of G-covariance (invariance)
can be extended to such ‘brackets’.

Consider an example of G-covariant Poisson bracket on a given homogeneous G-space
O, namely, the Sklyanin bracket reduced to the space K[O]. We denote this bracket { , }O.
The fact that this bracket is well defined follows from [DGS] (see also considerations below).

Write the Sklyanin bracket as a difference of two terms

{ , }K[G] = { , }left − { , }right (2.3)

where

{f, g}left = ◦ρ⊗2
l (r−)(f ⊗ g), {f, g}right = ◦ρ⊗2

r (r−)(f ⊗ g).

Being reduced to the space O, the bracket {f, g}left becomes11

{f, g}Oleft =
∑
α∈	+

(Eα(f )E−α(g) − E−α(f )Eα(g)) ,

where the elements E±α are treated to be vector fields naturally defined on the homogeneous
space G/G� which is isomorphic to O. As for the reduced bracket { , }Oright, it becomes G-
invariant. Nevertheless, in general the above left and right brackets are not Poisson ones, since
none of them satisfies the Jacobi identity.

As was shown in [GP], on a semisimple orbitO ⊂ g∗ the bracket { , }Oleft becomes a Poisson
one iff the orbit O is symmetric12. In the case G = SL(n) a semisimple orbit is symmetric iff

11 If r is an arbitrary element of
∧2

(g) and g is represented in the space of functions on a homogeneous space M by
vector fields ρ : g → Vect(M), the expression {f, g}r = ◦ρ⊗2(r)(f ⊗ g) is often called the r-matrix bracket. Thus,
the bracket {f, g}Oleft is just of this type.
12 In [GP] the orbits possessing this property were called the R-matrix type orbits. As was shown there, if O is an
R-matrix type orbit, then it is semisimple or nilpotent. For nilpotent orbits a necessary and sufficient condition to be
of the R-matrix type was also found.

10
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it is the orbit of a diagonal matrix with two different eigenvalues. It is not difficult to see that
{ , }Oright and { , }Oleft become Poisson brackets simultaneously. Indeed, the Schouten bracket of
{ , }O contains three terms: the Schouten bracket of { , }Oleft with itself, that of { , }Oright with itself
and that of these two brackets. Since the latter Schouten bracket always vanishes the former
Schouten brackets vanish simultaneously (see [DGS] for detail).

Moreover, if O is a symmetric orbit, the bracket {f, g}Oright equals (up to a factor) the
Kirillov–Kostant–Souriau (KKS) one {f, g}OKKS which is the restriction of the linear Poisson–
Lie bracket defined on g∗ to the orbit O. This follows from the fact that in this case the space
K[O] is multiplicity free and therefore any two G-invariant brackets are proportional to each
other.

Finally, on a symmetric orbit O there exists a Poisson pencil

{ , }Oa,b = a{ , }OKKS + b{ , }Oleft.

In [DGK] an attempt was undertaken to quantize this Poisson pencil on the CP
n type orbits (i.e.

those of minimal dimension) via the generalized Verma modules. Another way of quantizing
such a Poisson pencil in the spirit of the affine algebraic geometry uses quotienting the REA.
We exhibit this way below.

Let us go back to the example above. Consider the reduced Sklyanin bracket on the
hyperboloid O = {(x, h, y)|h2 + 4xy = 1}. Since this orbit is symmetric, the bracket
{f, g}Oright equals (up to a factor) the KKS one. In order to find this factor we compute

{x, y}Oright = {ab,−cd}right = −(a2d2 − b2c2) = −(ad − bc)(ad + bc) = h.

Thus, it equals the KKS bracket.
Compute now the bracket {f, g}Oleft = (X(f )Y (g) − Y (f )X(g)) where X,H, Y are the

standard generators of sl(2) represented by the infinitesimal hyperbolic rotations:

X = h∂y − 2x∂h, H = 2x∂x − 2y∂y, Y = −h∂x + 2y∂h.

We have

{h, x}Oleft = 2hx, {h, y}Oleft = −2hy, {x, y}Oleft = h2.

Thus, the Sklyanin bracket reduced to the hyperboloid O is

{h, x}O = 2(h − 1)x, {h, y}O = −2(h − 1)y, {x, y}O = h(h − 1).

As for the above Poisson pencil we have

{h, x}Oa,b = a(2x) + b(2hx), {h, y}Oa,b = a(−2y) + b(−2hy), {x, y}Oa,b = ah + bh2.

It is easy to see that this bracket is Poisson on the whole space sl(2)∗ too.
Our calculations are analogous to those from [Sh] (see the appendix) where the compact

form of the group, i.e. SU(2), was considered, but a concrete form of a given complex group is
somewhat pointless. In [KRR], it was shown that the Sklyanin bracket reduced to a semisimple
orbit O is compatible with the KKS one iff the orbit is symmetric. This entails that if an orbit
O is not symmetric then the brackets { , }Oright and { , }OKKS are not compatible (i.e. their Schouten
bracket does not vanish).

Note that the authors of [KRR] also deal with compact forms of groups and corresponding
orbits. However, as we said above this does not affect the result.

Nevertheless, if a given orbit O ⊂ g∗ is not symmetric, the family of G-covariant Poisson
brackets becomes larger. Let O be a generic orbit. This means that G� equals the Cartan
subgroup H. Let us describe the family of G-covariant Poisson structures following [DGS].

Consider an element

v =
∑
α∈	+

c(α)(Eα ⊗ E−α − E−α ⊗ Eα),

11
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where c(α) is a K-valued function on the set 	+ such that if α + β �= 0 then

c(α + β) = c(α)c(β) + 1

c(α) + c(β)
. (2.4)

Here we assume that c(α) + c(β) �= 0 for any α, β ∈ 	+ such that α + β �= 0. This condition
forbids some low-dimensional subvarieties. Now, we modify the Sklyanin bracket (2.3) on G
by replacing the bracket { , }right for the following one:

{f, g}right,c = ◦(ρ⊗2
r (v)(f ⊗ g)

)
.

The bracket {f, g}right,c can also be reduced to the homogeneous space O ∼= G/H and
the bracket

{ , }Oc = { , }Oleft − { , }Oright,c

is a Poisson one as was shown in [DGS].
Note that if λ : 	+ → K is a linear function then c(λ) = coth(λ(α)) is a solution to

(2.4). Thus, the variety of G-covariant Poisson brackets { , }Oc can be identified with a vector
space of dimension dim h with exception of the aforementioned low-dimensional subvarieties.
Observe that the reduced Sklyanin bracket corresponds to the case c(α) = 1 for all α ∈ 	+.

If an orbit O is not generic, i.e. G� �= H , then different functions λ can give rise to the
same Poisson structure on O, i.e. in this case the map c → { , }Oc is not injective.

Emphasize that the bracket { , }left −{ , }right,c is not Poisson one on G (it becomes Poisson
bracket only after the reduction to O). But it can be treated in terms of the so-called classical
dynamical r-matrices (see [L] and references therein). Also, note that another but equivalent
approach to the classification problem of G-covariant Poisson structures on homogeneous
G-spaces was developed in [Ka].

A way of formal quantization of the Poisson brackets { , }Oc was suggested in [DGS] where
as it is usual in the framework of formal quantization, the problem of convergency of series
defining the deformed product is disregarded. It would be interesting to express the bracket
{ , }Oc in terms of the coordinate algebra K[O] and to quantize it explicitly by presenting the
result in the spirit of affine algebraic geometry or to show that it is not possible.

Meanwhile, on the whole vector space gl(n)∗ there exists a GL(n)-covariant Poisson
structure which is the semiclassical counterpart of the REA (for this reason we denote the
corresponding bracket { , }REA). Moreover, as shown in [D] the bracket { , }REA can be restricted
to any orbit O ⊂ gl(n)∗ giving rise to the GL(n)-covariant Poisson structure on the coordinate
algebra K[O].13

Besides, the bracket { , }REA is compatible with the linear Poisson–Lie bracket { , }PL also
defined on gl(n)∗. By direct computations it is easy to see that the semiclassical counterpart
of the two parameter mREA L(Rq, h̄) is just the Poisson pencil (1.9) generated by these
two brackets. Thus, this Poisson pencil can be quantized explicitly in the spirit of affine
algebraic geometry. By treating its quantum counterpart via the algebra L(Rq, h̄) we avoid
the convergency problem of the deformation quantization scheme. The restrictions of the
above Poisson pencil to semisimple orbits can also be quantized in a similar manner. As a
result of such a quantization we get quotients of the mREA discussed below.

The explicit form of the bracket { , }REA reads (see [Mu1, GPS3])

{f, g}REA = ◦r l,r
+ (f ⊗ g) − ◦r r,l

+ (f ⊗ g) − ◦rad,ad
− (f ⊗ g), ∀f, g ∈ K[gl(m)∗]. (2.5)

Here

r− =
∑
i<j

e
j

i ⊗ ei
j − ei

j ⊗ e
j

i , r+ =
∑
i,j

e
j

i ⊗ ei
j ,

13 In fact, there are two structures: one of them is considered below, another one is associated with the second type
REA in a similar way.
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the elements e
j

i form the standard basis of the Lie algebra gl(n)[
e
j

i , e
r
k

] = δ
j

k e
r
i − δr

i e
j

k ,

and the element r+ ∈ gl(n)⊗2 is the gl(n) split Casimir element. Superscripts indicate the
type of the action. Namely,

r
ad,ad
− (f ⊗ g) =

∑
i<j

(
ad e

j

i (f ) ⊗ ad ei
j (g) − ad ei

j (f ) ⊗ ad e
j

i (g)
)
,

r l,r
+ (f ⊗ g) =

∑
i,j

ρl

(
e
j

i

)
f ⊗ ρr

(
ei
j

)
g, r r,l

+ (f ⊗ g) =
∑
i,j

ρl

(
e
j

i

)
g ⊗ ρr

(
ei
j

)
f.

Here the notation ad e
j

i stands for the vector field acting on lrk ∈ K[GL(n)] by the rule
ad e

j

i

(
lrk
) = δ

j

k l
r
i − δr

i l
j

k , whereas the notations ρl, ρr have the same meaning as above.
Let us list the basic properties of the bracket { , }REA. First of all, it is GL(n)-covariant.

More precisely, it is a linear combination of the r-matrix bracket (the third term in (2.5))
and GL(n)-invariant bracket (the first two terms in (2.5)). Second, it can be restricted to the
subspace sl(n)∗ since for all f ∈ K[GL(n)] we have {f, }REA = 0, where  = ∑ lii . The
restricted bracket { , }sl−REA is SL(n)-covariant.

Remark 2. The first two terms in (2.5) can be interpreted in the following way [G3]. The space
sl(n)⊗2 considered as an sl(n)-module can be decomposed into a direct sum of irreducible
sl(n)-modules. For n > 2 this decomposition contains two components isomorphic to the
algebra sl(n). One of these components belongs to the skew-symmetric part

∧2
(sl(n)),

the other one belongs to the symmetric part Sym(2)(sl(n)). So, there exists unique (up
to a factor) nontrivial sl(n)-morphism σ :

∧2
(sl(n)) → Sym(2)(sl(n)) (it identifies the

corresponding sl(n)-components and kills all the others). On extending the morphism σ up
to the algebra Sym(sl(n)) via the Leibnitz rule, we get an SL(n)-invariant bracket. (Note that
for a Lie algebra g of the series Bn,Cn or Dn no similar bracket exists since the space g⊗2 is
multiplicity free.) At some specific value of the factor of the morphism σ , the corresponding
bracket coincides with that defined by the first two terms of (2.5) restricted to sl(n)∗.

The bracket { , }sl−REA can be restricted to any orbit O ⊂ sl(n)∗ (see [D]). If such an
orbit is semisimple, it is closed. Let IO be an ideal of functions vanishing on such an orbit O.
Then {f, g}sl−REA ∈ IO for any f ∈ K[sl(n)]∗ ∼= Sym(sl(n)) and g ∈ IO. The quantization
of the Poisson pencil generated by the KKS bracket on O and the bracket { , }sl−REA restricted
to the orbit can be done via a proper quotienting the standard mREA L(Rq, h̄) in the spirit
of affine algebraic geometry. Thus, we get the braided coordinate algebra Kq[O] which is
a deformation of the classical algebra K[O] whereas a quantization of the restricted bracket
{ , }sl−REA alone can be realized as a quotient of the algebra L(Rq).

If the orbit O is generic, the ideal IO is generated by the elements TrLk − ak with
appropriate ak ∈ K, 2 � k � n (since Tr(L) = 0). Here L is the classical analog of the matrix
L coming in the definition of the algebra L(Rq), i.e. it satisfies the defining relation of the
REA but with R replaced by the usual flip. Then we get the algebra Kq[O] as a quotient of the
algebra L(Rq, h̄) or L(Rq) over an ideal generated by the elements TrR(Lk) − ak, 2 � k � n,
where TrR is quantum trace introduced below. If an orbit O is not generic the problem of
finding the ‘quantum coordinate algebra’ Kq[O] is more subtle (see [DM]).

Emphasize that for other simple Lie algebras there exist orbits on which the bracket { , }Oc
is compatible with the KKS one for some c (such orbits were called good in [DGS]). However,
these brackets and the corresponding pencils were quantized in [DGS] via the deformation
quantization scheme only. It is not known whether it is possible to define the corresponding
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quantum algebra by a finite set of polynomial relations among their generators (at least for the
matrix groups).

Let us give a short summary of the considerations above. If an orbit O ⊂ sl(n)∗ is
symmetric, the family of SL(n)-covariant brackets is just the Poisson pencil generated by the
KKS bracket and the r-matrix one. Quantization of any Poisson bracket from this pencil can
always be realized as a proper quotient of the algebra L(Rq, h̄). Thus, we get a braided affine
variety. If a semisimple orbit O is not symmetric, the quantization method depends on a given
bracket on K[O]. However, the previous method is still valid, provided such a bracket is a
linear combination of the KKS bracket and that { , }sl−REA.

3. Quantum matrix algebras

The REA and the RTT algebra defined above are particular examples of the so-called quantum
matrix algebras. First examples of these appeared in works [FM] and [H]. A general definition
and extensive studying of the algebraic structure were given in [IOP].

The definition of the quantum matrix algebra is based on the pair of the compatible
braidings which are defined below.

Definition 3. Let V be a finite-dimensional vector space over the ground field K, dim V = N ,
and let R,F ∈ End(V⊗2) be two invertible operators. An ordered pair {R,F } is called a pair
of compatible braidings if the following conditions are satisfied:

• Both operators R and F obey the quantum Yang–Baxter equation (1.2).
• The operators R and F satisfy the compatibility conditions

R12F23F12 = F23F12R23, F12F23R12 = R23F12F23. (3.1)

Given a pair of compatible braidings {R,F } we shall additionally assume the braidings
to be strictly skew invertible.

Definition 4. An operator R is said to be skew-invertible if there exists an operator
�R ∈ End(V ⊗2) such that

Tr(2)R12�
R
23 = P13 = Tr(2)�

R
12R23, (3.2)

where the subscript in the notation of the trace shows the index of the space V , where the
trace is applied (the enumeration of the factors in the tensor product is taken as follows:
V ⊗k = V1 ⊗ V2 ⊗ · · · ⊗ Vk). The skew-invertible operator R is strictly skew invertible if the
operator

C = Tr(2)�
R
12 (3.3)

is invertible.

Let us note that for a strictly skew-invertible braiding R the operator

B = Tr(1)�
R
12 (3.4)

is also invertible [O].
As a direct consequence of definitions of B and C we find

Tr(1)B1R12 = Id = Tr(2)C2R12. (3.5)

The operators B and C play the crucial role for the structure of the quantum matrix algebras
and, in particular, for the representation theory of REA.
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With the matrix C one defines the R-trace operation TrR : MatN(W) → W

TrR(X) =
N∑

i,j=1

C
j

i Xi
j , X ∈ MatN(W), (3.6)

where W is any linear space.

Remark 5. Note that if we work with the second form of REA, the matrix C in the above
definition of the R-trace should be changed for the matrix B.

Now we are ready to give a general definition of a quantum matrix algebra.

Definition 6 [IOP]. Given a compatible pair {R,F } of strictly skew-invertible braidings,
the quantum matrix algebra (QMA) M(R, F ) is defined to be a unital associative algebra
generated by N2 components of the matrix M = ‖Mj

i ‖1�i,j�N subject to the relations

R12M1̄M2̄ = M1̄M2̄R12, (3.7)

where we use the following notation:

M1̄ = M1 = M ⊗ Id, M2̄ = F12M1̄F
−1
12 (3.8)

for the copies of the matrix M.

The defining relations (3.7) then imply the same type of relations for consecutive pairs of
the copies of M (see [IOP])

Rk,k+1Mk̄Mk+1 = Mk̄Mk+1Rk,k+1, (3.9)

where Mk+1 = Fk,k+1Mk̄F
−1
k,k+1.

Remark 7. As can be easily seen, the pairs {R,P } (P being a permutation matrix) and {R,R}
are compatible pairs of braidings in the sense of definition 3. The first of them defines the RTT
algebra while the second one gives rise to the REA. Besides these evident examples, there
exist large multiparametric families of compatible braidings leading to other quantum matrix
algebras.

From now on, we shall be interested in a subfamily of QMAs characterized by the property
that in the pair {R,F } the first component R is a skew-invertible Hecke symmetry. Recall that
it means that skew-invertible matrix R additionally obeys the quadratic Hecke condition

(R − q Id)(R + q−1Id) = 0, q ∈ C\0, (3.10)

where the numerical parameter q is either equal to 1 or is not a root of unity of any order:
qk �= 1,∀k ∈ Z+.

With any Hecke symmetry R one can associate an ordered pair of integers (m|n) called
the bi-rank14 of the symmetry R. A Hecke symmetry with the bi-rank (m|n) can be considered
as a generalization of the super-flip on the vector super-space V(m|n). Therefore, we call
this Hecke symmetry (and the corresponding QMA) GL(m|n) type braiding. Note, that any
skew-invertible Hecke symmetry of the bi-rank (m|n) is automatically strictly skew-invertible
since it can be proved (see [GPS3], corollary 8) that

B · C = q2(n−m)Id. (3.11)

14 This notion was defined in [GPS3] as follows. The Poincaré–Hilbert series of the algebra
∧

q (V ) where V is a

vector space endowed with a Hecke symmetry R : V ⊗2 → V ⊗2, is always a rational function. Let us assume it to be
uncancelable. Then m (resp., n) is the degree of its numerator (resp., denominator).
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A Hecke symmetry R realizes local (or R-matrix) representations of the An−1 series
Hecke algebras Hn(q). The detailed treatment of the structure of the Hecke algebras and their
R-matrix representations can be found in the review [OP1] and references therein.

Describe now the main properties of a general GL(m|n) type QMA. First of all, we can
extract the commutative characteristic subalgebra Char(M) which is formed by the linear span
of the QMA elements of the following form:

x(hk) = Tr
R(1,...,k) (M1̄ · · · Mk̄ρR(hk)) k = 1, 2, . . . , (3.12)

where hk runs over all elements of the Hecke algebra Hk(q) and ρR : Hk(q) → End(V ⊗k) is
the R-matrix representation of the Hecke algebra associated with a given Hecke symmetry R.
The symbol Tr

R(1,...,k) means that we apply the R-trace over the spaces from the first to the kth
ones.

Among elements of the characteristic subalgebra we distinguish the set of ‘power sums’
pk(M) and Schur symmetric functions sλ(M) defined respectively by the relations

p0(M) := TrR(Id), pk(M) = Tr
R(1···k)(M1̄ · · · Mk̄Rk−1 · · · R1), (3.13)

where Ri = Ri,i+1 and

s0(M) = 1, sλ(M) = Tr
R(1···k)

(
M1̄ · · · Mk̄ρR

(
Eλ

α

))
. (3.14)

Here λ � k is an arbitrary partition of the given integer k ∈ Z+ and Eλ
α stands for a

primitive idempotent of the Hecke algebra Hk(q) parameterized by the Young tableau (λ;α)

corresponding to the partition λ. The right-hand side of (3.14) does not actually depend on
the index α of the primitive idempotent. It can be proved that the elements pk(M) generate
the characteristic subalgebra [IOP] and the elements sλ(M) form its linear basis [GPS1].

Besides, we define the kth powers Mk̄ of the matrix M by the following rule:

M 0̄ = Id, M 1̄ = M1,

Mk̄ = Tr
R(2···k)(M1̄ · · · Mk̄Rk−1 · · · R1), k = 2, 3, . . . .

(3.15)

Comparing definitions (3.13) and (3.15) we find the relation pk(M) = TrR(Mk̄) which
is similar to the classical one. But in general, the usual matrix product of quantum matrices
does not possess the classical property, that is

Mk̄ · Mp̄ �= Mk+p.

Nevertheless, it is possible to define an associative multiplication � of quantum matrices which
satisfies the following remarkable properties (see [OP2]):

Mk+1 = M � Mk = Mk � M, (Id x(M)) � Mk = Mk � (x(M) Id),

where x(M) is an arbitrary element of the characteristic subalgebra.
Definition (3.15) is justified by the fundamental property of any GL(m|n) type QMA.

Namely, in each such algebra there exists a polynomial identity in powers Mk̄ of order m + n

generalizing the classical Cayley–Hamilton identity valid for the numerical matrices. The
coefficients of the ‘quantum Cayley–Hamilton polynomial’ are some linear combinations of
the Schur functions sλ(M). Moreover, the quantum Cayley–Hamilton polynomial can be
presented in a factorized form as the �-product of two polynomials of the orders m and n. This
fact enables us to introduce the notion of the ‘spectrum’ of the quantum (super) matrix and
distinguish the ‘odd’ and ‘even’ eigenvalues. The detailed treatment of these questions with
complete proofs is given in [GPS1, GPS2].

Now we give some explicit formulae for the case of M(R,R)GL(m|n) type QMA
(hereafter we restrict ourselves to this case). As we already mentioned above, this is nothing
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but the REA. In this case, the complicated �-product of quantum matrices reduces to the usual
matrix product and the characteristic subalgebra Char(L) is central in the REA, that is

Lk̄ ≡ Lk = L · Lk−1 = Lk−1 · L, x(L)L = Lx(L), ∀x(L) ∈ Char(L).

On introducing a special notation [m|n]kr for the partition ((n+1)k, nm−k, r) � (mn+k+r)

we can write the Cayley–Hamilton identity as follows [GPS1]:

m+n∑
i=0

Lm+n−i

min{i,m}∑
k=max{0,i−n}

(−1)kq2k−i s[m|n]ki−k
(L) ≡ 0.

This identity can be presented in a remarkable factorized form. Multiplying the above formula
by s[m|n](L), we can rewrite the result as follows [GPS2]:(

m∑
k=0

(−q)kLm−ks[m|n]k0
(L)

)
·
(

n∑
r=0

q−rLn−r s[m|n]0
r
(L)

)
≡ 0.

Hereafter, the notation [m|n] = [m|n]0
0 stands for the m × n rectangle.

It is useful to introduce the parametrization for the Schur functions as the homomorphic
map from the characteristic subalgebra Char(L) into the algebra K[μ, ν] of polynomials in
commuting variables μ = {μi}1�i�m and ν = {νj }1�j�n (see [GPS2])

s[m|n]k (L)

s[m|n](L)
�→ s[m|n]k (μ, ν)

s[m|n](μ, ν)
=

∑
1�i1<···<im�m

q−kμi1 · · ·μik = ek(q
−1μ), 1 � k � m, (3.16)

s[m|n]r (L)

s[m|n](L)
�→ s[m|n]r (μ, ν)

s[m|n](μ, ν)
=

∑
1�j1<···<jr�n

(−q)rνj1 · · · νjr
= er(−qν), 1 � r � n. (3.17)

Here ek(·) denotes the elementary symmetric polynomial in finitely many variables—the
arguments of ek(·).

Note that this parametrization is noncontradictory if we demand the Schur function
s[m|n](L) to be invertible and the ratios of the Schur functions in the left-hand side of (3.16)
and (3.17) to be algebraically independent. Note that the indeterminates μi and νj can be
treated as elements of an algebraic extension of the field of fractions of the central characteristic
subalgebra15.

With this parametrization the Cayley–Hamilton identity takes the form

(s[m|n](L))2
m∏

i=1

(L − μi Id) ·
n∏

j=1

(L − νj Id) ≡ 0.

Recall that since we are now dealing with the REA all matrix products have the usual sense.
The above totally factorized form of the Cayley–Hamilton identity justifies an interpretation of
the indeterminates {μi} and {νj } as, respectively, ‘even’ and ‘odd’ eigenvalues of the quantum
super-matrix L.

Remark 8. As was shown in [GPS2], the map (3.16) and (3.17) allows us to parameterize all
the elements of the characteristic subalgebra in terms of μ and ν. In particular,

s[m|n](L) �→ s[m|n](μ, ν) =
m∏

i=1

n∏
j=1

(q−1μi − qνj ).

15 As follows from the results of [GPS2], the characteristic subalgebra of REA considered as a ring is an integer
domain and the field of fractions can be correctly defined.
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Therefore, the invertibility of the Schur function s[m|n](L) in terms of the spectrum of L is
equivalent to invertibility of all factors (q−1μi − qνj ).

Now we describe ‘sl-reduction’ of the REA and interrelations between this algebra and
the RTT one. Let us rewrite the defining relations of the REA L(Rq) in the following form:

R12L1R12L1R
−1
12 − L1R12L1 = 0 or L1R12L1R

−1
12 − R−1

12 L1R12L1 = 0. (3.18)

Here as usual L = ∥∥Lj

i

∥∥
1�i,j�N

(N = dim V ) and R is a skew-invertible Hecke symmetry of
the bi-rank (m|n).

One can easily prove the centrality of elements pk(L) = TrR(Lk) which generates the
characteristic subalgebra of the REA. Indeed, consecutively multiplying the defining relation
(1.7) by the matrix L1 from the left we get the following relations:

R12L1R12L
k
1 − Lk

1R12L1R12 = 0 ⇔ L1R12L
k
1R

−1
12 − R−1

12 Lk
1R12L1 = 0, ∀k ∈ Z+.

Then, by applying the R-trace Tr
R(2) in the second space from the last relation and using the

property

Tr
R(2)

(
R±

12X1R
∓
12

) = Id1 TrR(X)

we find pk(L)L − Lpk(L) = 0. Emphasize once more that this proof uses only the skew
invertibility of R and is valid for any GL(m|n) type REA.

Now, apply a linear shift to generators of a GL(m|n) type REA:

L
j

i → L
j

i − h̄

q − q−1
δ

j

i 1L (3.19)

with a nonzero numerical parameter h̄ (we retain the same notations for the new generators
and for the corresponding matrix L = ‖Lj

i ‖). Using the Hecke condition on R, for the new
generators we get relations (1.10) of the mREA L(Rq, h̄)

R12L1R12L1 − L1R12L1R12 = h̄(R12L1 − L1R12).

Recall that the semiclassical counterpart of the standard mREA is a Poisson pencil considered
in section 2.

If the bi-rank components m �= n, then the R-trace of the unit matrix is nonzero in virtue
of the following fomula (see [GPS3]):

TrR(Id) = Tr(C) = qn−m(m − n)q, kq = qk − q−k

q − q−1
.

In this case we are able to make an ‘sl-reduction’ of the mREA (or REA). To this end we pass
from the set of generators

{
L

j

i

}
to another set in which the central element  = p1(L) = TrR(L)

is chosen as one of the generators. Let us extract the R-traceless part of the matrix L:

F = L − 

TrR(Id)
Id,  = TrR(L). (3.20)

Then the defining relations for the mREA can be rewritten in terms of generators F
j

i and  as
follows:

R12F1R12F1 − F1R12F1R12 =
(
h̄1L − (q − q−1)

TrR(Id)


)
(R12F1 − F1R12), F = F. (3.21)

Here the generators F
j

i are linearly dependent since TrR(F ) = 0.
We see that contrary to the classical case, the set of generators F

j

i does not generate a
subalgebra in mREA. But the centrality of  allows us to consider a quotient algebra

SL(Rq, h̄) = L(Rq, h̄)/〈〉. (3.22)
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The defining relations for the SL(Rq, h̄) generators F
j

i (we keep the same notation for them)
can be obtained from (3.21) by setting  = 0. The passage to the quotient SL(Rq, h̄) (resp.
SL(Rq)) will be referred to as an sl-reduction of the mREA L(Rq, h̄) (resp., L(Rq)).

At last, we define the truncated mREA L̃(Rq, h̄) as an associative algebra generated by
the elements F

j

i and  subject to the rules:

R12F1R12F1 − F1R12F1R12 = h̄(R12F1 − F1R12), F = F, TrR(F ) = 0.

We complete this section by discussing a covariance property of the REA with respect to
the adjoint coaction of the RTT algebra. The coaction is based on the Hopf algebra structure
which can be defined in the RTT algebra under the additional condition that the element detqT
is central (see section 1). This condition is necessary for definition of the antipodal map.
Note that in the standard case this coaction allows us to endow the REA with a covariant
Uq(sl(N))-module structure since the quantum group is restricted dual to the standard RTT
algebra quotiented by the condition detqT = 1.

The coproduct in the RTT algebra reads �(T ) = T
.⊗ T [FRT]. Hereafter, the notation

A
.⊗ B means the matrix product of two equal size matrices A and B where their matrix

elements are not multiplied but tensorized. Thus, matrix elements of the matrix A
.⊗ B are

(A
.⊗ B)

j

i = Ak
i ⊗ B

j

k .

Consequently, all the algebras considered above (L(Rq),L(Rq, h̄), L̃(Rq, h̄) and
SL(Rq, h̄)) can be given a structure of the (right) adjoint comodule over the RTT algebra. The
adjoint coaction δr on the generators can be presented as follows:

δr

(
A

j

i

) = N∑
k,p=1

A
p

k ⊗ T k
i S
(
T j

p

)
or δr(A) = T AS(T ),

where A stands for L or F and S(·) denotes the antipodal map. The products in the above
algebras are covariant with respect to this coaction, i.e., the multiplication in these algebras
commutes with the coaction.

Thus, in the standard case all these algebras can be endowed with an action of the QG
Uq(sl(n)) so that their products are coordinated with this action in the sense of formula (1.8).

4. Elements of the mREA representation theory

In this section, we reproduce some elements of representation theory of the REA related to a
skew-invertible Hecke symmetry of general type and compare our approach with that arising
from [FRT] and [LS] which is valid for the standard REA.

Our method of constructing the representation theory of the REA is based on treating
the space L = span

(
L

j

i

)
as a space of endomorphisms of the basic (fundamental) space V .

Indeed, as was shown in [GPS3], the dual spaces V and V ∗ possess the basis sets {xi} and
{xj } in which the right and left pairings are uniquely (up to a nonzero factor) defined by the
formulae

V ⊗ V ∗ → K : xi ⊗ xj �→ δ
j

i and V ∗ ⊗ V → K : xj ⊗ xi �→ B
j

i , (4.1)

where
∥∥Bj

i

∥∥ is the matrix corresponding to the operator (3.4) in the basis {xi}. Recall that
this matrix is invertible for any skew-invertible Hecke symmetry. In order to construct the
Schur–Weyl category of the REA representations we need only the skew-invertibility of a
Hecke symmetry.

The crucial point is that the map ρV : L → End(V ) defined by the rule

ρV

(
L

j

i

) � xk = xiB
j

k (4.2)
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realizes an irreducible representation of the algebraL(Rq, 1) (the symbol � stands for the action
of a linear operator). This action together with the pairing 〈xj , xi〉 = B

j

i is the motivation for
treatment of L

j

i as the element xi ⊗ xj .
If R is the usual flip (therefore B

j

i = δ
j

i ) we get the basic (fundamental) representation of
the algebra U(gl(n)). If R is a super-flip then B is the parity operator: B(x) = (−1)x̄x where
x is a homogeneous element and x̄ is its parity.

Let us consider an example, namely the REA related to the Uq(sl(2)) Hecke symmetry.
In the basis {xi ⊗ xj } ∈ V ⊗2 we get the following matrix:

R =

⎛
⎜⎜⎝

q 0 0 0
0 q − q−1 1 0
0 1 0 0
0 0 0 q

⎞
⎟⎟⎠ .

Then the matrix B becomes diag(q−1, q−3). Let L = (a b

c d

)
be the matrix of the mREA

generators. Explicitly, the corresponding mREA L(Rq, h̄) is defined by the following system:

qab − q−1ba = h̄b, q(bc − cb) − (q − q−1)a(d − a) = h̄(a − d),

qca − q−1ac = h̄c, q(cd − dc) − (q − q−1)ca = −h̄c,

ad − da = 0, q(db − bd) − (q − q−1)ab = −h̄b.

(4.3)

We present this system in terms of another set of generators {, h, b, c}, where
 = q2 TrRL = q−1a + q1d and h = a − d. The multiplication rules (4.3) take the form

q2hb − bh + (q − q−1)b = 2qh̄b, b − b = 0,

q2ch − hc + (q − q−1)c = 2qh̄c, c − c = 0,

2qq(bc − cb) + (q2 − 1)h2 + (q − q−1)h = 2qh̄h, h − h = 0.

(4.4)

Observe that the element  is central in this algebra. In what follows we also consider the
quotient SL(Rq, h̄) = L(Rq, h̄)/〈〉. Thus, this algebra is generated by three elements b, h, c

subject to the system

q2hb − bh = 2qh̄b, q2ch − hc = 2qh̄c, 2qq(bc − cb) + (q2 − 1)h2 = 2qh̄h. (4.5)

Note that at q = 1 this algebra SL(Rq, h̄) coincides with U(sl(2)h̄).
The explicit form of the representation (4.2) reads

ρV (a) =
(

q−1 0
0 0

)
, ρV (b) =

(
0 q−3

0 0

)
,

ρV (c) =
(

0 0
q−1 0

)
, ρV (d) =

(
0 0
0 q−3

)
.

In order to get the corresponding representation of the sl-reduced algebra (4.5) we use the
general recipe suggested in [S]. Let ρU : L(Rq, 1) → End(U) be an mREA representation
and the central element TrR(L) is represented by a scalar operator

ρU(TrR(L)) = χ1 IdU ,

where χ1 = χ(TrR(L)) is the value of a character χ : Z(L(Rq, 1)) → K of the center
Z(L(Rq, 1)).

Then the straightforward calculation shows that the SL(Rq, 1) generators F
j

i are
represented in the space End(U) by the following linear operators:

ρ̄U

(
F

j

i

) = 1

ω

(
ρU

(
L

j

i

)− δ
j

i

χ1

Tr C
IdU

)
, ω = 1 − (q − q−1)

χ1

Tr C
. (4.6)
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Applying formula (4.6) to the above representation ρV we get the representation of the
algebra SL(Rq, 1) (4.5)

ρ̄V (h) = w

(
q 0
0 −q−1

)
, ρ̄V (b) = w

(
0 q−1

0 0

)
,

ρ̄V (c) = w

(
0 0
q 0

)
, w = q2 + 1

q4 + 1
.

(4.7)

Let us go back to a general case and introduce another basic (contragradient) representation
ρV ∗ : L(Rq, 1) → End(V ∗) of the algebra L(Rq, 1) defined by the formula

ρV ∗
(
L

j

i

) � xk = −xrR
kj

ri . (4.8)

Note that in the classical case (when R is the usual flip) we have ρV ∗(a) = −ρV (a)∗. Assuming
R to be involutive and introducing an involution via R as discussed in the following section we
can get such a contragradient representation. However, if R is not involutive this method fails.

In the case in question this representation is

ρV ∗(a) =
(−q 0

0 0

)
, ρV ∗(b) =

(
0 0

−1 0

)
,

ρV ∗(c) =
(

0 −1
0 0

)
, ρV ∗(d) =

(
q−1 − q 0

0 −q

)
.

As was mentioned above, in [GPS3] there was constructed a rigid quasitensor Schur–Weyl
category SW(V ) of vector spaces generated by V and V ∗ such that each object of this category
can be endowed with an L(Rq, 1)-module structure. The term ‘rigid’ means that with any
object U this category contains its dual. Recall that an object U ∗ is dual to U if there exists
nontrivial pairings U ⊗ U ∗ → K and U ∗ ⊗ U → K which are the categorical morphisms. A
peculiarity of the case related to an even R is that (by assuming detqT to be central, see section
1) the dual space to V can be identified with a subspace in some tensor power of the space V

while for the general case the dual space V ∗ must be introduced independently.
Using the pairing (4.1) we introduce an important morphism trR : L → K which will be

referred to as a categorical trace

trR
(
L

j

i

) = δ
j

i . (4.9)

Remark 9. The fact that the above definition oftrR gives a categorical morphism follows from
the identification of L

j

i and xi ⊗ xj . Now the categorical trace just equals the pairing

trR
(
L

j

i

) = 〈xi, x
j 〉

which is a morphism (see [GPS3]).

Anyway, in a general case the initial skew-invertible braiding R can be extended in a
unique way to the braidings RU,W for any two objects U and W of the Schur–Weyl category.
Besides, all morphisms of the category are assumed to be natural or functorial as defined in
[T]. This means that given two morphisms f : U → U ′ and g : W → W ′ the relation

(g ⊗ f ) ◦ RU,W = RU ′,W ′ ◦ (f ⊗ g)

(where the symbol ◦ denotes the composition of the maps) is assumed to be fulfilled. By
putting W ′ = W and g = Id we get a condition on a morphism f which means that f is
covariant.

As we said above the space L is identified with the product V ⊗ V ∗. Consequently, this
space is an object of the Schur–Weyl category.
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Definition 10. Given an object U of the Schur–Weyl category, representations ρU :L(Rq, 1) →
End(U) is called R-invariant or equivariant if its restriction to the space L is a categorical
morphism.

For example, the above representations ρV and ρV ∗ are equivariant.
Our next goal is to exhibit a way of multiplying equivariant representations of the algebra

L(Rq, 1). To this end we need the braiding

REnd : End(V )⊗2 → End(V )⊗2,

which is a particular but very important case of the aforementioned braidings RU,W .
Its explicit form in the basis {L1

.⊗ L2} of the space L⊗2 reads as follows [GPS3]:

REnd(L1
.⊗ L2) = Tr(0)

(
R10L1R

−1
10

.⊗ L1R10�02
)
P12, (4.10)

where the operator � is defined in (3.2). (The notation
.⊗ was introduced in the previous

section. For instance, the entries of the matrix L1
.⊗ L2 where L1 = L ⊗ Id, L2 = Id ⊗ L are

L
j

i ⊗ Ll
k .)

In the tensor power L⊗k there is a basis different from that
{
L

j1
i1

⊗ L
j2
i2

⊗ · · · ⊗ L
jk

ik

}
. This

new basis is composed from the matrix elements of the tensor product L1̄

.⊗ L2̄

.⊗ · · · .⊗ Lk̄

and it turns out to be more convenient for our calculations. Here in accordance with the general
definition (3.8) we set

L1̄ = L ⊗ Id⊗(k−1), Lp+1 = RpLp̄R−1
p , p � k − 1. (4.11)

Using the skew-inverse operator � one can prove that the matrix elements of L1̄

.⊗ L2̄

.⊗
· · · .⊗ Lk̄ are in one-to-one correspondence with those of L1

.⊗ L2
.⊗ · · · .⊗ Lk and thus form

the basis in L⊗k ∼= (End(V ))⊗k .
Making use of (4.10) we find that

REnd(L1̄

.⊗ L2̄) = L2̄

.⊗ L1̄, (4.12)

and, as a consequence,

REnd(Lk̄

.⊗ Lp̄) = Lp̄

.⊗ Lk̄, ∀p > k, k, p ∈ Z+.

Note that each homogeneous component of the associated graded algebra GrL(Rq, h̄) can
be identified with an object of the category SW(V ). So, the braiding REnd can be extended
onto the whole algebra GrL(Rq, h̄) and, consequently, to the algebra L(Rq, h̄) (in particular, to
L(Rq, 1)). Besides, the braidings transposing elements of L(Rq, h̄) and elements of arbitrary
objects of the category SW(V ) are also defined (see [GPS3] for detail). Below the symbol
R(a ⊗ b) stands for the general form of braiding transposing a and b which are elements of
objects of the category SW(V ) (in particular, one or both of them can belong to L(Rq, h̄)).

Our next goal is to introduce a coproduct which endowsL(Rq, 1) with a braided bi-algebra
structure. This enables us to multiply its equivariant representations. In order to describe the
coproduct and the corresponding braided bi-algebra structure we need the following definition.

Definition 11. Given any skew-invertible Hecke symmetry R, introduce a braided associative
algebra L(Rq) by the data:

(1) As a vector space over the field K the algebra L(Rq) is isomorphic to the tensor product
of two copies of mREA L(Rq, 1)

L(Rq) ∼= L(Rq, 1) ⊗ L(Rq, 1).
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(2) The product ∗ : L(Rq)
⊗2 → L(Rq) is defined by the rule

(a1 ⊗ b1) ∗ (a2 ⊗ b2) = a1a
′
2 ⊗ b′

1b2, ∀ai ⊗ bi ∈ L(Rq), (4.13)

where a1a
′
2 and b1b

′
2 are the products of elements of mREA and

a′
2 ⊗ b′

1 = R(b1 ⊗ a2). (4.14)

Note that the associativity of the ∗-product is proved in [GPS3].
Let us define a coproduct � : L(Rq, 1) → L(Rq) as a linear map of the following form:

�(eL) = eL ⊗ eL,

�
(
L

j

i

) = L
j

i ⊗ eL + eL ⊗ L
j

i − (q − q−1)
∑

k Lk
i ⊗ L

j

k,

�(ab) = �(a) ∗ �(b) ∀a, b ∈ L(Rq, 1).

(4.15)

In addition to (4.15), we introduce a linear map ε : L(Rq, 1) → K

ε(eL) = 1, ε
(
L

j

i

) = 0, ε(ab) = ε(a)ε(b) ∀a, b ∈ L(Rq, 1). (4.16)

Proposition 12 ([GPS3]). The maps � and ε endow the algebra L(Rq, 1) with a bi-algebra
structure. This means that the relations

(Id ⊗ �)� = (� ⊗ Id)�, (Id ⊗ ε)� = Id = (ε ⊗ Id)�

hold and moreover � is a homomorphism of the algebra L(Rq, 1) into L(Rq).

Remark 13. The above braided bialgebra structure was deduced from the braided bialgebra
structure in L(Rq) discovered by Majid (see [M3, M4]). A passage from the latter structure to
the former one can be given by a shift of generators (3.19). Nevertheless, namely, in the form
(4.15) the coproduct involved in this construction is very useful for defining ‘braided vector
fields’ (see section 8). Also, note that for q = 1 this coproduct takes the well-known additive
form on generators of a Lie algebra or its generalized analog discussed in the following section.

Now, we are able to define a product of two representations of the algebra L(Rq, 1).

Proposition 14 [GPS3]. Given two equivariant mREA modules U and W , let ρU : L(Rq, 1) →
End(U) and ρW : L(Rq, 1) → End(W) be the corresponding equivariant representations.
Consider a map ρU⊗W : L(Rq) → End(U ⊗ W) defined by the following rule:

ρU⊗W(a ⊗ b) � (u ⊗ w) = (ρU(a) � u′) ⊗ (ρW (b′) � w),

∀a ⊗ b ∈ L(Rq), ∀u ∈ U, ∀w ∈ W,
(4.17)

where

u′ ⊗ b′ = R(b ⊗ u).

Then the map (4.17) defines a representation of the braided algebra L(Rq) in the space U ⊗W .

This proposition implies the following corollary.

Corollary 15. Let U and W be two L(Rq, 1)-modules with equivariant representations ρU

and ρW . Then the map L(Rq, 1) → End(U ⊗ W) given by

a �→ ρU⊗W(�(a)), ∀a ∈ L(Rq, 1), (4.18)

where the coproduct � and the map ρU⊗W are given respectively by formulae (4.15) and
(4.17), is an equivariant representation of L(Rq, 1).
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Using this result we can endow any tensor products of V and V ∗ (as well as subspaces
of these tensor products, extracted by Young projectors) with a L(Rq, 1)-module structure so
that the corresponding representation is equivariant (see [GPS3]).

As an important example we consider an analog of the ‘adjoint’ representation ρV ⊗V ∗ ,
arising from those ρV and ρV ∗ . To this end, we need an explicit form of the braiding
REnd,V : End(V ) ⊗ V → V ⊗ End(V ) since it comes in construction of the product of
representations.

The matrix of this braiding turns out to be [GPS3]:

REnd,V (L1
.⊗ x2) = x2

.⊗ Tr(0)(R10L0�02)P12. (4.19)

The action

ρV ⊗V ∗
(
L

j1
i1

) � L
j2
i2

= (ρV ⊗ ρV ∗) ◦ (�(Lj1
i1

)⊗ (xi2 ⊗ xj2)
)

or, in matrix form, ρV ⊗V ∗(L1) � L2 can be easily calculated with the use of formulae (4.2),
(4.8), (4.15), and (4.19). The result is given by a somewhat complicated expression:

ρV ⊗V ∗(L1) � L2 = (q − q−1)L1I2 + L1B2P12 − Tr(0)(R10L1R10�02)P12.

Nevertheless, in the basis of quantum matrix copies (4.11) the adjoint action has a nice
and simple form, namely

ρV ⊗V ∗(L1̄) � L2̄ = L1R12 − R12L1. (4.20)

This example shows again that basis of copies (4.11) is a very useful tool.
Now, we restrict ourselves to the standard case and explain a way of constructing a family

of representations of the corresponding (m)REA arising from methods [FRT] and [LS]. Note
that the approach of [LS] was used in [DS] for constructing representation theory of the braided
Lie algebra sl(2)q (see section 5).

The authors of [FRT] suggested a way of finding the center of the QG Uq(g). This center
can be easily calculated via the formula TrRLk , where L is a matrix with entries belonging to
the QG. Lately, it was understood that this matrix is subject to the defining relations of the
corresponding REA. The matrix L was defined in [FRT] via the formula

L = S(L−)L+, (4.21)

where L± are the matrices composed of the quantum group generators and S(·) is the antipode.
Let us consider the simplest example related to the QG Uq(sl(2)). In this case with the

use of the basis {, h, b, c} discussed at the beginning of this section we get the following
parametrization of the mREA generators via the generators E,F and H of the QG Uq(sl(2)):

h = −λ

q
(qEF − q−1FE), b = λq−H E,

c = λq−H−2F,  = q2H−1 + q−2H−3 +
λ2

q2
FE,

(4.22)

where we set for shortness λ = q − q−1. The generators E,F and H are normalized as
follows:

qH E = qEqH , qH F = q−1FqH , [E,F ] = q2H − q−2H

q − q−1
.

However, the generators , h, b, c are not independent in the above parametrization. In
[FRT] the problem of finding relations between these generators was not considered. Such
relations in the Uq(sl(n)) case were found in [LS]. In that paper for the QG Uq(sl(n)) a
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family of generators similar to those above was constructed. In the simplest case (n = 2),
these generators X0, X± and C satisfy the system of relations [LS]

q2X0X+ − X+X0 = qCX+,

q−2X0X− − X−X0 = −q−1CX−,

X+X− − X−X+ + (q2 − q−2)X2
0 = (q + q−1)CX0,

CXm = XmC (m = 0,±)

(4.23)

and

C2 − (q − q−1)2

(
X2

0 +
qX−X+ + q−1X+X−

q + q−1

)
= 1. (4.24)

It is easy to see that upon setting

X0 = qC

2q

h, X+ = qCb, X− = qCc

the first three lines of (4.23) transform precisely into relations (4.5) with h̄ = 1. Thus, the
algebra SL(Rq, 1) is embedded in the QG Uq(sl(2)) extended by the element C−1.

Since C is central, it becomes a nontrivial scalar in each finite-dimensional representation
of the QG Uq(sl(2)). This enables one to get a representation of the algebra SL(Rq, h̄) once
a Uq(sl(2)) representation is given. Note that such a representation of the algebra SL(Rq, h̄)

can be treated as that of L(Rq, h̄) but with the image of  depending on the images of b, c

and h (due to (4.24)). Thus, we can get a subfamily of all finite-dimensional representations
of the corresponding REA constructed by the general method. The same is valid for all QG
Uq(sl(n)).

In conclusion, we want to emphasize that our method of constructing the REA
representations does not give rise to non-equivariant ones. For example, the standard REA
has one-dimensional representations, which cannot be obtained either by our method or by
that of [LS]. We refer the reader to [K, Mu1] for such type representations. Also note that our
approach is valid for a generic q whereas the method of [LS] allows us to consider the case of
special q (roots of unity). This case was considered in [DS]. Besides, this method enables one
to construct Verma type modules for the standard algebra SL(Rq, h̄) (also, see [LS]). Note
that in general we cannot define such type modules.

However, by comparing our approach and that from [LS] we would like to stress again
that the latter one cannot be applied to the REA connected with nonstandard braidings since
the corresponding QG like objects are not known for the general type braidings.

5. Braided Lie algebras

In this section, we discuss the role of the mREA in the definition of the quantum (braided)
analogs of a Lie algebra. We are mainly interested in the Lie algebra type objects similar
to gl(n) and sl(n). For such objects the problem can be formulated as follows. Let
R : V ⊗2 → V ⊗2 be a skew-invertible braiding. Consider the space End(V ) equipped
with the braiding REnd : End(V )⊗2 → End(V )⊗2 (4.12). We want to introduce a braided
analog of the Lie bracket in the space End(V ), which is an REnd-invariant operator

[ , ] : End(V )⊗2 → End(V )

and to define the corresponding enveloping algebra U(End(V )) with the good deformation
property. Actually, we first introduce an analog of the enveloping algebra U(gl(n)) and then
define a gl(n) type bracket.
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Before going into detail we would like to make some historical comments. The first
generalization of a Lie algebra was a super-Lie algebra. We were informed by Gerstenhaber
and Stasheff, to whom we express our profound gratitude, that a super-version of the Jacobi
identity was introduced in [N] (also, in the 1940–1950s super-algebra type objects were popular
in connection with the Whitehead product). Lately, the super-algebras were intensively studied
by physicists in the frameworks of models with fermion–boson symmetries.

The basic example is a super-Lie algebra gl(m|n) defined in the space End(V ) where
V = V(m|n) = V0 ⊕ V1 is a Z2 graded space and dim V0 = m, dim V1 = n. A braiding R is a
super-flip R(x ⊗ y) = (−1)x̄ȳy ⊗ x.

Attempts to introduce the Lie algebra type objects graded by other finite commutative
group were undertaken in the late 1970s [Sch].

The next generalization of the Lie algebra notion was related to the involutive symmetries
R : R2 = Id. In [G1] the following notion was introduced.

Definition 16. The data

(V ,R : V ⊗2 → V ⊗2, [ , ] : V ⊗2 → V )

where R is an involutive symmetry are called a generalized Lie algebra if the axioms below
hold true:

(1) [ , ]R(X ⊗ Y ) = −[X, Y ];
(2) [ , ][ , ]12(I + R12R23 + R23R12)(X ⊗ Y ⊗ Z) = 0;
(3) R[ , ]23(X ⊗ Y ⊗ Z) = [ , ]12R23R12(X ⊗ Y ⊗ Z)

for all X, Y,Z ∈ V .

Note that the generalized Jacobi identity (axiom 2) can also be presented in one of the following
equivalent forms:

2.a. [ , ][ , ]23(I + R12R23 + R23R12)(X ⊗ Y ⊗ Z) = 0;
2.b. [ , ][ , ]12(X ⊗ (Y ⊗ Z − R(Y ⊗ Z))) = [X, [Y,Z]];
2.c. [ , ][ , ]23((X ⊗ Y − R(X ⊗ Y )) ⊗ Z) = [[X, Y ], Z].

Let us denote the generalized Lie algebra originated from a vector space V and a braiding
R as g(V ,R). Its enveloping algebra U(g(V ,R)) can be naturally defined as a quotient of the
free tensor algebra T (g(V ,R)):

U(g(V ,R)) = T (g(V ,R))/〈X ⊗ Y − R(X ⊗ Y ) − [X, Y ]〉 ∀X, Y ∈ V.

The enveloping algebra U(g(V ,R)) has the good deformation property. In particular, due
to the PBW-like theorem [PP] the associated graded algebra GrU(g(V ,R)) is canonically
isomorphic to the algebra

Sym(g(V ,R)) = T (g(V ,R))/〈Im(Id − R)〉.
Besides, it becomes a braided Hopf algebra, being equipped with an appropriate coproduct

� and an antipode S. These operators have the classical form �(X) = X ⊗ 1 + 1 ⊗ X and
S(X) = −X on elements X ∈ V and can be naturally extended to the whole algebra with the
use of the operator R (see [G2]).

The axioms of definition 16 are satisfied by the following data:

(End(V ), REnd : End(V )⊗2 → End(V )⊗2, [ , ] : End(V )⊗2 → End(V )), (5.1)

where REnd is an extension of a skew-invertible involutive symmetry R : V ⊗2 → V ⊗2 to the
space End(V )⊗2 (see section 4) and the bracket is defined by

[ , ] = ◦(Id − REnd). (5.2)
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Here ◦ : End(V )⊗2 → End(V ) is the usual product in the algebra End(V ). For the generalized
Lie algebra (5.1) we use the notation gl(V,R).

Now, we suppose R = Rq to be a Hecke symmetry. Consider the corresponding mREA
L(Rq, 1). As was shown in [GPS3], the algebra L(Rq, 1) possesses the good deformation
property.

Now we define a braided Lie algebra such that its enveloping algebra coincides with the
mREA L(Rq, 1). To this end we rewrite the mREA multiplication rules (1.10) in the following
form:

L1̄L2̄ − R−1
12 L1̄L2̄R12 = L1R12 − R12L1, (5.3)

where the matrices Lk̄ are defined in (4.11). Then, on the linear space L = span
(
L

j

i

) ∼=
End(V ) we introduce a Lie type bracket [ , ] : L⊗2 → L setting by definition

[L1̄, L2̄] = L1R12 − R12L1. (5.4)

This bracket can be written in a form, similar to (5.2). For this purpose we define the linear
operator Q : L⊗2 → L⊗2:

Q(L1̄

.⊗ L2̄) = R−1
12 L1̄

.⊗ L2̄R12. (5.5)

Then, as can be easily seen from (5.3), the bracket (5.4) reads

[ , ] = ◦(Id − Q) (5.6)

where ◦ has the same meaning as above. Note that the multiplication of the operators L
j

i can
be calculated on the basis of (4.2)

L
j1
i1

◦ L
j2
i2

= B
j1
i2

L
j2
i1
. (5.7)

One of the important distinction between the bracket (5.4) and that (5.2) of the generalized
Lie algebra gl(V,R) consists in the fact that the operator Q differs from the operator REnd

whereas if R is an involutive symmetry these operators are equal to each other.
In terms of the operator Q we can express an operator Sq : L⊗2 → L⊗2 possessing the

property

L(2)(Rq) = ImSq,

where L(2)(Rq) ⊂ L⊗2 is the second-order homogeneous component of the REA L(Rq). Such
an operator Sq can be defined by the following formula (see [GPS3]):

Sq = 1

22
q

((q2 + q−2) Id + Q + Q−1).

Thus, the operator Sq can be treated as a total q-symmetrizer on the space L⊗2.

Theorem 17. The bracket (5.4) possesses the following properties:

(1) The bracket is skew-symmetric in the following sense:

[ , ]Sq(L1̄

.⊗ L2̄) = 0, (5.8)

where Sq is the symmetrizer introduced above.
(2) The bracket satisfies the generalized Jacobi identity of the form

[ , ][ , ]23((X ⊗ Y − Q(X ⊗ Y )) ⊗ Z) = [[X, Y ], Z] ∀X, Y,Z ∈ L,

otherwise stated, the adjoint action defined by

ad L
j

i

(
Ll

k

) = [Lj

i , L
l
k

]
(5.9)

is a representation of the algebra L(Rq, 1).
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(3) The bracket is REnd-invariant. This means that

REnd[ , ]23 = [ , ]12(REnd)23(REnd)12,

REnd[ , ]12 = [ , ]23(REnd)12(REnd)23,
(5.10)

where both sides of the above equalities are operators acting in L⊗3.

Proof. To prove the first statement of the theorem, we note that the operator Q has the minimal
polynomial of the form [GPS3]

(Q + q2Id)(Q + q−2Id)(Q − Id) = 0

which in turn gives us the following expression for the inverse operator Q−1:

Q−1 = Q2 + (q2 + q−2 − 1)Q − (q2 + q−2 − 1) Id.

Now, the property (5.8) follows directly from relation (5.6) and explicit forms of Sq and Q−1

written above.
The second claim was actually proved in section 4, relation (4.20), where the construction

(5.9) was found from the general approach to the mREA representation theory. But it can also
be easily verified by direct calculations. To this end we rewrite the ‘adjoint action’ (5.9) in the
basis of matrix copies Lk̄ . Then this action is given by relation (5.4)

L1̄ � L2̄ = L1R12 − R12L1 = (L1̄ − L2̄)R12,

where the symbol � stands for the adjoint action.
This entails that

L2̄ � L3̄ = (L2̄ − L3̄)R23. (5.11)

Now, by writing the mREA commutation relation as

R12L1̄L2̄ − L1̄L2̄R12 = L2̄ − L1̄

we apply the both sides of this equality to the element L3̄ and verify that the results are equal
to each other. Indeed, we have

R12L1̄ � (L2̄ � L3̄) = (L2̄ − L1̄)R23 − R12R23R
−1
12 (L2̄ − L1̄),

L1̄ � (L2̄R12 � L3̄) = L1R
−1
12 R−1

23 R12 − R−1
12 L1R

−1
23 R12 − L1R

−1
23 + R−1

23 R−1
12 L1R12

and

(L2̄ − L1̄) � L3̄ = L2̄R23 − R23L2̄ − R23L1R
−1
12 R−1

23 + R23R
−1
12 L1R

−1
23 .

Then, taking the difference of the first two expressions and applying the Hecke condition
to connect R and R−1, we convince ourselves that the difference coincide with the third
expression above, that is

R12(L1̄�)(L2̄�) − (L1̄�)(L2̄�)R12 = (L2̄�) − (L1̄�).

The proof of the third claim of the theorem is a matter of a trivial calculation on the basis
of (4.12), (5.4) and (5.11). Consider, for example, the action of the first relation (5.10) on the
basis element L1̄

.⊗ L2̄

.⊗ L3̄ (we shall omit the symbols
.⊗ for simplicity). The right-hand

side of the relation leads to the following chain of transformations:

L1̄L2̄L3̄
(REnd)12−→ L2̄L1̄L3̄

(REnd)23−→ L2̄L3̄L1̄
[ ,]12−→ (L2̄ − L3̄)R23L1̄,

while the left-hand side gives

L1̄L2̄L3̄
[ ,]23−→ L1̄(L2̄ − L3̄)R23

REnd−→ (L2̄ − L3̄)L1̄R23
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which coincides with the above result for the right-hand side since L1̄ commutes with the
matrix R23. �

We keep the notation gl(V,R) for the following data:

(L = span(L
j

i ),Q : L⊗2 → L⊗2, [ , ] = ◦(Id − Q))

which is similar to that above related to an involutive R. We call this data the braided Lie
algebra of gl-type.

Now, consider its sl-reduction. For this purpose, we pass to the mREA generators F
j

i

and  introduced in (3.20). Recall that this passage requires Tr(C) �= 0. The commutation
relations of the new mREA generators are given by (3.21). It is not difficult to calculate the
adjoint action in terms of F and :

ad () = 0, ad (F1) = −(q − q−1)Tr(C)F1

ad F1̄() = 0,

ad F1̄(F2) = F1R12 − R12F1 + (q − q−1)R12F1R
−1
12 .

(5.12)

As was defined in section 3, the sl-reduction of the mREA L(Rq, 1) consists in passing to
the quotient algebra SL(Rq, 1) (3.22). The explicit commutation relations of the SL(Rq, 1)

algebra read

R12F1R12F1 − F1R12F1R12 = (R12F1 − F1R12), TrR(F ) = 0. (5.13)

Let us consider the space

SL = span
{
F

j

i

} ⊂ L = span
{
L

j

i

}
formed by the traceless elements with respect to the categorical trace trR (4.9):

SL = {X ∈ L|trR(X) = 0}.
The restriction Q �→ Qsl : SL⊗2 → SL⊗2 can also be naturally defined. It is easy to see
that the categorical trace of the bracket (5.4) is zero, so the bracket can be restricted to the
subspace SL. However, the corresponding ‘adjoint action’ of the restricted bracket following
from (5.13)

adslF1̄(F2̄) = [F1̄, F2̄]sl = F1R12 − R12F1

does not define a representation of SL because it does not contain the last term of formula
(5.12).

Thus, if similarly to the braided Lie algebra gl(V,R) we define the algebra sl(V ,R) as
the following data:

(SL = span
(
F

j

i

)
,Qsl : SL⊗2 → SL⊗2, [ , ]sl : SL⊗2 → SL),

where [ , ]sl is the bracket (5.6) restricted to SL, we can see that the Jacobi identity in the form
valid for the former algebra fails for the algebra sl(V ,R).

A particular case of such a braided Lie algebra related to Uq(sl(n)) was introduced in
[LS] (see the previous section). A similar construction was suggested in [DGHZ].

In our approach we need no object of QG type. Moreover, our construction is valid for
Hecke symmetries of general type. In particular, it embraces q-deformations of Lie super-
algebras gl(m|n).

Quantum Lie algebras related to the QG Uq(g) of other series were introduced in [DGG].
Let us explain the main idea of that construction. Fix a Lie algebra g and consider a Uq(g)-
covariant analog [ , ]q of the classical Lie bracket [ , ] : g⊗2 → g. For this end we decompose
the Uq(g)-module g⊗2 into a direct sum of irreducible Uq(g)-modules. Here we assume the

29



J. Phys. A: Math. Theor. 42 (2009) 313001 Topical Review

space g to be endowed with a Uq(g) action deforming the usual adjoint action. By means of
the QG coproduct this action can be extended onto g⊗2. In contrast with the previous case the
Uq(g)-module g⊗2 is multiplicity free. So, the bracket [ , ]q can be defined in a unique (up to
a factor) way similarly to their classical counterparts but in the category of Uq(g)-modules.
Thus, a ‘quantum (braided) Lie algebra’ bracket can be introduced.

However, we know no reasonable Jacobi identity which could be written for such a
‘quantum Lie algebra’. Moreover, the above ‘enveloping algebra’ does not possess the good
deformation property. The point is that even the ‘symmetric algebra’ corresponding to such
an ‘enveloping algebra’ is not a deformation of its classical counterpart.

As was mentioned in [GPS3], we think that an axiomatic introduction of a generalized
(quantum, braided) Lie algebra is possible iff the corresponding braiding is involutive.
Nevertheless, in some papers such algebras related to non-involutive braidings are introduced
by the same (or very close) axiom system. However, this way of introducing the Lie algebra
type objects is not justified by exhibiting meaningful examples.

To conclude this section, we would like to discuss the problem of defining a conjugation
(involution) in a generalized (quantum, braided) Lie algebra. Let us first assume that
R : V ⊗2 → V ⊗2 is a skew-invertible real involutive symmetry (so, K = R). Also, suppose
that there exists a nondegenerated pairing V ⊗2 → R which is R-invariant.

Then the space End(V ) can be identified with V ⊗2 and this identification is a categorical
morphism in terminology of section 4. Let us introduce an involution in End(V ) as the image
of the operator R : V ⊗2 → V ⊗2. By passing to the complexification of the algebra End(V )

we complete this operator with the complex conjugation of numerical coefficients. The final
operator

∗ : End(V ) → End(V ), x → x∗

is called conjugation. It can be naturally extended to the enveloping algebra U(gl(V,R)) via
the relation (x ◦ y)∗ = ◦(∗ ⊗ ∗)R(x ⊗ y) where ◦ is the product in U(gl(V,R)).

This conjugation is involutive, REnd-invariant and it is coordinated with the bracket of
generalized Lie algebra gl(V,R) in the following sense:

[x, y]∗ = −[x∗, y∗]. (5.14)

Note that this relation is universal: it does not depend on a skew-invertible involutive symmetry
R. The latter relation entails that the family of elements which are skew-symmetric with respect
to the conjugation x∗ = −x is a subalgebra. Also, the map x → −x∗ is an isomorphism of
the generalized Lie algebra gl(V,R).

Note that if R is the usual twist and the pairing is Euclidean the subalgebra of skew-
symmetric elements is just u(n).

Now, let V be a vector space endowed with a Hecke symmetry. We are interested in a
problem of classification of all involutions (conjugations) in the algebra End(V ) which are
R-invariant and verifying (5.14). In the Uq(sl(2)) case it can be shown by a direct calculation
that the only R-invariant linear operators on the space End(V ) are scalar on each irreducible
component in the decomposition End(V ) = K⊕SL where SL is the subspace of the traceless
elements. So, the only involution on SL which is R-invariant operator reads x → x∗ = −x. It
is out of interest and is not a deformation of the involution on the algebra sl(2, C) giving rise
to the algebra su(2). We would like to emphasize that using in algebras in question involutions
which are not categorical morphisms is not motivated by their ‘braided nature’ and leads to
some shortcoming (see the following section).
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6. The quantum sphere: different approaches

In this section, we consider different approaches to introducing the quantum sphere
(hyperboloid) and developing some aspects of geometry on it. Historically, the RTT algebra
was the first defined quantum matrix algebra. So, quantum homogeneous space algebras (and
in the first turn, the quantum sphere) were initially defined by imitating the classical definition
of homogeneous G-spaces as cosets G/H .

However, as explained in section 2 on a symmetric orbit there exists another way of
defining the corresponding ‘quantum variety’ via quotienting the standard (m)REA. Let us
compare these ways on the example of a quantum sphere. Though in this case the both ways
lead to equivalent results, they yield completely different methods of adjacent geometry, in
particular, those of constructing projective modules over q-spheres. Now, describe a quantum
sphere explicitly.

First, describe the quantum algebra Kq[SL(2)] which is a quantum counterpart of the
Sklyanin bracket on the group SL(2). Computing the defining relations for the entries of the

matrix T = (a b

c d

)
we get

ab = qba, ac = qca, bd = qdb, bc = cb, cd = qdc,

ad − da = (q − q−1)bc, ad − qbc = da − q−1bc = 1.

Consider the subalgebra of this algebra consisting of elements invariant with respect to the
coaction

� :

(
a b

c d

)
→
(

a ⊗ z b ⊗ z−1

c ⊗ z d ⊗ z−1

)
where z is a formal invertible indeterminate. We shall denote this subalgebra Kq[SL(2)/H ].
It is a q-deformation of the algebra of functions K[SL(2)/H ].

The algebra Kq[SL(2)] can be equipped with the following conjugation operator:

a∗ = d, b∗ = −qc, c∗ = −q−1b, d∗ = a, (6.1)

which is assumed to be antilinear and subject to the usual condition

(xy)∗ = y∗x∗, ∀x, y ∈ Kq[SL(2)].

Consequently, it is involutive. Here we assume K = C and q to be real.
Note that the Hecke symmetry coming in the definition of the algebra Kq[SL(2)] is a

particular case of the so-called braiding of real type as defined in [M4] (definition 4.2.15).
In our normalization of a Hecke symmetry R this condition reads R̄T = R. If R is such a
Hecke symmetry it is possible to introduce an involution in the corresponding RTT algebra in
a similar way.

It is not difficult to see that the subalgebra Kq[SL(2)/H ] is closed with respect to the
conjugation (6.1). The algebra Kq[SL(2)/H ] equipped with this involution will be denoted
Kq[SU(2)/H ]. Namely, this algebra is usually considered as one of avatars of a quantum
sphere.

Being equipped with the above conjugation (6.1), the algebra Kq[SL(2)] is treated to
be a quantum counterpart of the algebra K[SU(2)]. We denote it as Kq[SU(2)]. All its
∗-representations (i.e. those respecting the ∗-operator) in a Hilbert space were classified in
[VS], where it was shown that there is a series of one-dimensional representations and an
infinite-dimensional one. They can be restricted to the subalgebra Kq[SL(2)/H ].

Now, we consider a way of defining the quantum sphere (hyperboloid) via the REA. To
this end consider the mREA L(Rq, h̄) related to the standard Hecke symmetry. This algebra
is explicitly given by the system (4.3) or (4.4) in the generators , h, b, c. Also, consider its
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quotient SL(Rq, h̄) defined by the system (4.5). We shall refer to the algebra SL(Rq, h̄) as
q-noncommutative if h̄ �= 0 and as q-commutative if h̄ = 0. Note, that since the algebras
L(Rq, h̄) and L(Rq) are isomorphic for q �= ±1 we avoid to call them in a similar manner by
keeping this terminology for their sl-quotients which are not isomorphic to each other for any
value of q.

Consider the central element

Cas = q2 TrqL
2 = q−1a2 + q−1bc + qcb + qd2 = 2

2q

+ q−1bc +
h2

2q

+ qcb ∈ L(Rq, h̄).

Its image in the algebra SL(Rq, h̄) reads

Cassl = q−1bc +
h2

2q

+ qcb.

It is also central in this algebra. So, it is natural to introduce the following quotient:

SLC(Rq, h̄) = SL(Rq, h̄)/〈Cassl − C〉,
where C ∈ K is a number. We assume that C �= 0.

In what follows the elements Cas and Cassl are called the q-Casimir elements in the
algebras L(Rq, h̄) and SL(Rq, h̄), respectively. Note that the center of the algebra L(Rq, h̄)

is generated by the elements Cassl and .
The algebra SLC(Rq, h̄) is called the quantum hyperboloid since at q = 1 we get just a

usual hyperboloid (one or two sheeted in dependence on C ∈ K = R). By a quantum sphere
one often means this algebra but considered over the field of complex numbers (K = C) and
endowed with a conjugation (involution) defined on the generators as follows:

∗ = , h∗ = h, b∗ = c, c∗ = b.

Onto the whole algebra this involution is extended via the classical properties.
Nevertheless, such an involution does not allow us to define a quantum sphere as a real

algebra. This is a shortcoming of the involution which is not a categorical morphism whereas
a quantum hyperboloid can be treated as a real algebra if q ∈ R.

Considering irreducible representations Vk, dim Vk = k + 1 of the algebra SL(Rq, 1) we
can see that the constant C coming in the definition of the algebra SLC(Rq, 1) depends on k.
The situation is similar to the case of the algebra U(sl(2)) in which the value of the Casimir
element depends on k as well. By direct computation we get [S]

C(k) = C(Vk) = q−2 kq(k + 2)q

(k + 1)q

((k + 2)q + kq)

((k + 2)q − kq)2
.

As for the algebra SLC(Rq) = SLC(Rq, 0), besides one-dimensional representations, it
possesses two Verma-type representations which differ from one another by the sign. Finding
these representations is left to the reader.

Now, we want to discuss different ways of quantizing vector bundles on the sphere.
According to the Serre–Swan approach any vector bundle on an affine algebraic or a smooth
variety can be realized as a finitely generated projective module over the coordinate algebra of
the variety. As follows from [R], along with a formal deformation A → Ah̄ of a commutative
algebra A any projective A-module M can also be deformed into an Ah̄-module Mh̄. Otherwise
stated, the idempotent e(M) corresponding to the module M can be formally deformed into
an idempotent e(Mh̄) with entries belonging to the algebra Ah̄.

Nevertheless, we deal with a non-formal deformation and our deformation parameters
can be specialized. So, we want to get explicit expressions for idempotents over a quantum
sphere (hyperboloid). Construction of such idempotents in the framework of the first approach
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was done in [HM]. In that paper a series of idempotents e±1, e±2, . . . was constructed which
define the left Kq[SU(2)/H ] modules Kq[SU(2)/H ]⊕(|k|+1)ek . Let us reproduce two of these
idempotents:

e−1 =
(

ad −q−1ab

cd −q−1cb

)
=
(

a

c

)
(d,−q−1b), e1 =

(
da −qdc

ba −qbc

)
=
(

d

b

)
(a,−qc).

(These formulae differ from those of [HM] by replacing q → q−1.)
The authors of [HM] used this explicit realization of ‘quantum line bundles’ in order to

compute the Chern–Connes index in a particular case: the projective module corresponding
to k = −1 and a representation of the quantum sphere constructed in [MNW]. Recall that the
index is defined by the pairing of (the class of) a representation π of a given algebra A and
(the class of) a projective A-module M in accordance with the rule

Ind(π, e) = Tr(π(Tr(e))), (6.2)

where e is an idempotent corresponding to M.
Another approach to constructing projective modules over braided varieties (orbits) was

suggested in [GS1, GLS2]. Also, in [GLS2] a q-analog of the Chern–Connes index was
introduced and computed on q-spheres. The main tool employed in this approach is a series
of the Cayley–Hamilton identities which are valid for the matrix L(1) = L and for its higher
analogs L(k), k � 2. Here L is the matrix of the mREA generators and L(k) is the (k+1)×(k+1)-
dimensional matrix whose explicit form is given in [GLS2].

By passing to the algebra SL(Rq, h̄) we get reductions of the matrices L(k) → F(k) and the
Cayley–Hamilton identities for them. Being reduced to the algebraSLC(Rq, h̄) these identities
take the form pk(F(k)) = 0 where pk is a polynomial with numerical coefficients. Assuming
the roots of the polynomial pk to be distinct, we can associate with it k + 1 idempotents
ei(k), i = 1, 2, . . . , k + 1 with entries belonging to the algebra SLC(Rq, h̄).

Consider an example: the idempotents arising from the matrix L itself. In the algebra
SL(Rq, h̄) the matrix L reduces to

F =
(

qh

2q
b

c − q−1h

2q

)
= b

(
0 1
0 0

)
+ h

( q

2q
0

0 − q−1

2q

)
+ c

(
0 0
1 0

)
. (6.3)

This matrix satisfies the Cayley–Hamilton identity

F 2 − q−1h̄F − Cassl

2q

Id = 0. (6.4)

(This is an sl-reduction of the Cayley–Hamilton identity for the initial non-reduced form of
the matrix L.) While we pass to the algebra SLC(Rq, h̄) in the space Vk the coefficient Cassl

2q

becomes C
2q

. Assuming the roots μi, i = 0, 1 of the equation

μ2 − q−1h̄μ − C

2q

= 0

to be distinct we define two idempotents

ei(1) = L − μi Id

μi − μj

, i, j = 0, 1, j �= i.

The q-index introduced in [GLS2] has a form similar to (6.2) but the trace Tr is replaced
by its braided analog TrR

Indq(π, e) = TrR(π(TrRe)).
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Note that the elements TrRei(k) are central whereas it is not true for Trei(k) if q �= 1. Also,
observe that this method of constructing projective modules over braided orbits is valid for the
mREA related to skew-invertible Hecke symmetries of general type (but the case of non-even
symmetries is less studied).

The following proposition was proved in [GLS2].

Proposition 18. Let k be a sufficiently large positive integer. Then, with a proper numbering
of the idempotents ei(m), 0 � i � m we have

Ind(πk, ei(m)) = (m + k − 2i + 1)q,

where πk is the (right) R-invariant representation of the mREA L(Rq, 1) in the space Vk . Here
we assume the R-trace to be normalized so that it is an additive–multiplicative functional on
the corresponding Schur–Weyl category (see [GLS1]).

We emphasize that we are dealing with a q-noncommutative quantum (braided)
hyperboloid algebra. On setting q = 1, we get a noncommutative hyperboloid algebra
which is a quotient of U(sl(2)). However, since the value of the Casimir element (both in the
classical and quantum cases) depends on the space where the algebra in question is represented
we are somewhat dealing with a series of (braided) hyperboloids. Namely, in the formula
for the q-index the idempotent ei(m) has entries belonging to the algebra LC(Rq, 1) with
C = C(Vk).

Note that the modules

Mm = e0(m)LC(Rq, 1)⊕(m+1) and M−m = em(m)LC(Rq, 1)⊕(m+1), m = 1, 2, . . .

correspond to the line bundles O(m) and O(−m) respectively over the projective space CP
1

(also, we put M0 = LC(Rq, 1), this module corresponds to the trivial line bundle). We refer
the reader to [GLS2, GS2] for detail.

Now, we consider a quantum analog of the cotangent vector bundle on the hyperboloid
also presented as a projective module. First, consider the usual hyperboloid

H 2 =
{
b, h, c ∈ sl(2)∗|bc +

h2

2
+ cb = C �= 0

}
.

The space
∧1

(H 2) of 1-forms on it consists of all linear combinations

dbα + dhβ + dcγ α, β, γ ∈ K[H 2]

modulo the submodule(
dbc +

dhh

2
+ dcb

)
ϕ, ϕ ∈ K[H 2].

Hereafter K[H 2] = K[R3]
/〈

2bc + h2

2 − C
〉

is the coordinate ring of the hyperboloid H 2.

So, we realize the space
∧1

(H 2) as a right K[H 2]-module but since the algebra K[H 2] is
commutative it can be endowed with a two-sided module structure. It is not difficult to show
that this module is projective.

By passing to a q-analog Kq[H 2] = SL(Rq)
/〈

q−1bc + h2

2q
+ qcb − C

〉
of the algebra

K[H 2] we naturally define a q-analog of the space
∧1

(H 2) as a quotient module∧1

q
(H 2) = Kq[H 2]⊕3/M ′,

where M ′ = e′
Kq[H 2]⊕3 is the right Kq[H 2]-module such that the corresponding idempotent

is

e′ = 1

C

(
q−1c,

h

2q

, qb

)T

(b, h, c).
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Otherwise stated, in the right Kq[H 2]-module
∧1

q(H
2) the relation

q−1dbc +
dhh

2q

+ qdcb = 0 (6.5)

is imposed. It is also possible to realize the space
∧1

q(H
2) as a left module Kq[H 2]⊕3/M ′′

where M ′′ = Kq[H 2]⊕3e′′ and

e′′ = 1

C
(c, h, b)T

(
q−1b,

h

2q

, qc

)
. (6.6)

This means that in the space of braided differentials we impose the relation

q−1bdc +
hdh

2q

+ qcdb = 0.

Similarly to (6.5) this relation follows from the q-Casimir: in order to get these relations we
replace the left (resp., right) factors in each summand of the q-Casimir by their differentials.

Emphasize that we are only dealing with one-sided modules without endowing them with
a two-sided module structure. In order to convert such a one-sided module into a two-sided
one we have to introduce a transposition of ‘functions’ and ‘differentials’ arising from the
initial braiding R. However, as was shown in [AG2] there is no such a transposition which
would ensure the good deformation property of the module.

In a similar way, we can treat the space
∧2

q(H
2) of quantum 2-differentials as a one-sided

Kq[H 2] module. Note that the same approach is valid on a q-noncommutative hyperboloid
(sphere) or its classical analog q = 1 (see [AG1]). Observe that the Leibnitz rule for the
differential d is not applicable in all these cases. However, it is possible to construct a
q-analog of the classical de Rham operator by analyzing the decomposition of the spaces∧i

q (H
2), i = 1, 2 into a direct sum of irreducible Uq(sl(2))-module (and similarly for other

algebras) and defining this q-analog via the classical pattern (see [AG1] for detail).

7. Differential calculus via Koszul complexes

In this section, we discuss the role of Koszul type complexes in constructing the differential
calculus on the quantum matrix algebras.

Let V be a vector space over the ground field K, T (V ) = ⊕∞
k=0 V ⊗k be its free tensor

algebra and I ⊂ V ⊗2 be a vector subspace. Consider the quadratic algebra A = T (V )/〈I 〉
and introduce the following subspaces:

I∩n = V ⊗(n−2) ⊗ I
⋂

V ⊗(n−3) ⊗ I ⊗ V
⋂

V ⊗(n−4) ⊗ I

⊗ V ⊗2
⋂

. . .
⋂

I ⊗ V ⊗(n−2) ⊂ V ⊗n, n � 3.

Also we set by definition I∩2 = I, I∩1 = V and I∩0 = K.
Then the Koszul complex is defined by the chain of maps

. . . → I∩n ⊗ A → I∩(n−1) ⊗ A → . . . → I ⊗ A → V ⊗ A → A → K → 0

where A → K is the counit and for n � 1 the differential d : I∩n ⊗ A → I∩(n−1) ⊗ A reads

d
(
yi1yi2 . . . yin ⊗ x

) = yi1yi2 . . . yin−1 ⊗ yinx ∀x ∈ A, yi1 , . . . , yin ∈ V.

In fact, this complex splits up into disjoint complexes

· · · → I∩n ⊗ A(m) → I∩(n−1) ⊗ A(m+1) → · · · → I ⊗ A(m+n−2)

→ V ⊗ A(m+n−1) → A(m+n) → 0
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where A(m) = V ⊗m/I∪m and

I∪m = V ⊗(m−2) ⊗ I + V ⊗(m−3) ⊗ I ⊗ V + V ⊗(m−4) ⊗ I ⊗ V ⊗2

+ · · · + I ⊗ V ⊗(m−2) ⊂ V ⊗m, m � 2.

Also, we put A(1) = V and A(0) = K. The algebra A is called Koszul if these complexes are
acyclic for m + n � 1.

Assume now that in the space V ⊗2 there exists a subspace I+ complimentary to I (which
in the following will be denoted by I−) such that for a given m � 3 the subspaces I∪m

− ⊂ V ⊗m

and I∩m
+ ⊂ V ⊗m are complimentary, i.e.

I∪m
−
⋂

I∩m
+ = {0} and I∪m

− ⊕ I∩m
+ = V ⊗m. (7.1)

Let P
(m)
+ : V ⊗m → I∩m

+ be the projector taking I∪m
− to 0. Then for any element x of the

homogeneous component A(m),m � 2, we have x = P
(m)
+ (x) ∈ I∩m

+ modulo I∪m
− . If

I+ (respectively I−) is subspace of symmetric (respectively skew-symmetric) elements then
the projector P

(m)
+ is the operator of the complete symmetrization of elements from A(m).

Presenting any element of the algebra A as a sum of homogeneous components we can
symmetrize it as well. In this case we say that the element is presented in the canonical form.

Now, consider a family of quadratic algebras A(ν) = T (V )/〈I (ν)〉 where I (ν) ⊂ V ⊗2 is a
subspace depending on a parameter ν. Since we are dealing with a non-formal deformation, we
assume that I (ν) is defined by a system of finite linear combinations of generators of V ⊗2 with
coefficients analytically depending on ν in a neighborhood U of 0. So, in U the parameter ν

can be specialized. We are interested in such families of algebras that dim A(m)(ν) = dim A(m)

for any integer m (at least for a generic ν ∈ U ), where A = A(0).
Assume that for a family I−(ν) = I (ν) there exists another one I+(ν) such that for

any m � 2 the subspaces I∪m
− (ν) and I∩m

+ (ν) are complementary and the projectors P
(m)
+ (ν)

analytically depend on ν ∈ U except may be a finite set of points which does not include 0.
Then for a generic ν ∈ U we have dim A(m)(ν) = dim A(m) for all m, i.e. the algebra A have
the good deformation property.

Given families I±(ν) and therefore the projector P
(2)
+ (ν), we look for a higher projector

P
(m)
+ (ν),m � 3 as a polynomial in

(
P

(2)
+ (ν)
)

12, . . . ,
(
P

(2)
+ (ν)
)
m−1m

(the subscripts indicate
the spaces in the product V ⊗m where the operator acts) with analytical coefficients. Having
constructed such a polynomial, we can conclude that for a generic ν dim A(m)(ν) = dim A(m)

(here ‘a generic ν’ means ‘all ν except for a countable set’). If such projectors exist for all
m � 3 we conclude that this property is valid for all homogeneous components of the algebra
A(ν).

If in addition the initial algebra A is Koszul, then this is also true for the algebra A(ν) for
a generic ν (see [PP]).

In examples below we have two families of subspaces I±(ν) ⊂ V ⊗2 and we want to show
that the both algebras

A+(ν) = T (V )/〈I−(ν)〉, A−(ν) = T (V )/〈I+(ν)〉
have the good deformation property. In order to show this, we should construct the projectors
P

(m)
± (ν),m � 3 in terms of the operators P

(2)
± (ν). The ‘skew-symmetrization’ operators

P
(m)
− (ν) are defined similarly to the projectors P

(m)
+ (ν), provided that the subspaces I∪m

+ (ν)

and I∩m
− (ν) are complementary to each other for any m � 2. We call a couple of the subspaces

I±(ν) regular if the subspaces I∪m
± (ν) and I∩m

∓ (ν) are complementary for any m � 2.
In [G2] this scheme was applied to the algebras Symq(V ) and

∧
q(V ) related to the Hecke

symmetries. Namely, a series of projectors P
(m)
± (q) related to I−(q) = Im(q Id − Rq) and
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I+(q) = Im(q−1 Id + Rq) was constructed. As follows from [G2], these algebras have the
good deformation property. Note that if a family of Hecke symmetries is not quasiclassical
the monomials x

a1
1 . . . xan

n do not form a basis in the algebra Symq(V ). So, the method of
verifying the good deformation property of this algebra based on the ordering the generators
is not valid any more, whereas the above scheme is still applicable.

Again, consider the algebras Symq(T ) and L(Rq) = Symq(L) defined by formulae (1.6)
and (1.7) respectively (we do not assume a Hecke symmetry R to be quasiclassical). This
means that the corresponding subspaces I−(T ) and I−(L) are determined by the left-hand side
of these formulae. Now, define the complementary ‘symmetric’ components I+(T ) and I+(L)

by putting

I+(T ) = RT1T2 + T1T2R
−1, I+(L) = RL1RL1 + L1RL1R

−1

and define the corresponding algebras∧
q
(T ) = T (T )/〈I+(T )〉,

∧
q
(L) = T (L)/〈I+(L)〉. (7.2)

Note that the projector P
(2)
+ (L) is nothing but the operator Sq discussed in section 5. In the

paper [GPS3], an attempt was undertaken to construct the higher projectors P
(m)
± via those P

(2)
±

in order to apply the above scheme. We have only succeeded in constructing these projectors
for m = 3. (In fact, the construction is valid for all quantum matrix algebras associated with
a compatible pair of Hecke symmetries, in particular, for Symq(T ).) Nevertheless, as follows
from [Dr2] this property suffices for concluding that for any m � 4 and a generic q = eν

the dimensions of all homogeneous components are stable (classical for a quasiclassical R).
So, according to [Dr2] we should only control the dimensions of the third homogeneous
components. However, it would be interesting to explicitly construct the higher projectors.

Consider one example more, where this scheme can be hopefully applied, namely, the
algebra SL(Rq) = L(Rq)/〈〉 (an analogous quotient of the algebra Symq(T ) cannot be
defined since there is no central element in T ). As we observed above the algebra SL(Rq) is
defined by the same formulae as that L(Rq) but with the generators F

j

i instead of L
j

i . This
means that the subspace I−(SL) corresponding to this algebra can be obtained by replacing
the generators L

j

i in I−(L) by their traceless components F
j

i defined by formula (3.20).
It is more difficult to define the result of ‘sl-reduction’ of the algebra

∧
q(L). Describe

this procedure by mainly following [IP1].
In accordance with definition (7.2) the algebra

∧
q(L) is generated by the elements L

j

i

subject to the following multiplication rules:

R12L1R12L1 + L1R12L1R
−1
12 = 0. (7.3)

We make a linear change (3.20) L
j

i → {F j

i , 
}

including explicitly the R-trace  = TrR(L)

into the set of generators. Of course, as well as in the case of mREA, we assume
TrR(Id) = Tr(C) �= 0.

Calculating the R-trace in the second space of the defining relations (7.3) we find

L + L + ωL2 = 0, ω = q − q−1

or

F + F +
ω

1 + ω(TrR(Id))−1
F 2 = 0 (7.4)

that is the R-trace  is not central in our algebra. As was shown in [IP1], the element  is
nilpotent: 2 = 0.
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Now we can find the multiplication table of the algebra
∧

q(L) in terms of the generators F
and . Substituting the expression of L through F and  into (7.3) and using the anticommutation
relation (7.4) and nilpotency of , we get the following result:

R12F1R12F1 + F1R12F1R
−1
12 = κ

(
F 2

1 + R12F1R12
)
,

F + F = −τF 2,

2 = 0, TrR(F ) = 0,

(7.5)

where the numeric parameters κ and τ read

κ = ω

TrR(Id) + ω
, τ = κ TrR(Id).

Note that the R-traceless elements F
j

i form a subalgebra of
∧

q(L) since the element  does
not enter their multiplication table contrary to the case of mREA (see relations (3.21)). So, in
this case we have no need to pass to a quotient algebra in order to obtain the sl-reduction—the
traceless algebra is a subalgebra of the initial one. Finally, we put

I+(SL) = span
(
R12F1R12F1 + F1R12F1R

−1
12 − κ

(
F 2

1 + R12F1R12
))

and
∧

q(SL) = T (SL)/〈I+(SL)〉.
Hopefully, the couple of subspaces I±(SL) is regular. We are able to prove this claim

if the initial Hecke symmetry is of the Temperley–Lieb type. A proof will be given in our
subsequent paper.

Here we consider an example arising from the standard Hecke symmetry. The space
I−(q = eν) is determined by the left-hand side of relations (4.5). It is the spin 1 Uq(sl(2))-
submodule of the space SL⊗2 endowed with an Uq(sl(2))-action. The corresponding algebra
is just SL(Rq). The space I+(q) = V2 ⊕ V0 in this case is a direct sum of the spin 0 and spin
2 Uq(sl(2))-submodules of SL⊗2. Here

V0 = span

(
q−1b ⊗ c +

1

2q

h ⊗ h + qc ⊗ b

)
,

V2 = span(b ⊗ b, q2b ⊗ h + h ⊗ b, q3b ⊗ c − qh ⊗ h + q−1c ⊗ b, q2h ⊗ c + c ⊗ h, c ⊗ c).

(7.6)

It is not difficult to see that the braiding in the space SL⊗2 which is the extension of the initial
Hecke symmetry is a BMW symmetry. With the use of methods of [OP2] it is possible to
construct the projectors P

(m)
± . This is the basic idea of the aforementioned proof.

Remark 19. Given a subset I− ⊂ V ⊗2 it is not clear whether there is a subspace I+ such that
the couple (I−, I+) is regular. But even if it is the case, the complementary subspace I+ is not
in general unique. Consider an example.

Let R : V ⊗2 → V ⊗2, (dim V = 2) be an involutive symmetry given by

R(x ⊗ x) = x ⊗ x, R(x ⊗ y) = bx ⊗ x + y ⊗ x, R(y ⊗ x) = −bx ⊗ x + x ⊗ y,

R(y ⊗ y) = abx ⊗ x − ax ⊗ y + ay ⊗ x + y ⊗ y,

where {x, y} is a basis in V and a, b ∈ K. Then I− = span(−bx2 + xy − yx) and I+ =
span(x2, xy + yx,−axy + y2) (we omit the sign ⊗). The couple (I−, I+) is regular for any
a, b ∈ K. Even if we put b = 0, i.e. if we consider the ‘classical’ skew-symmetric subspace
I−, the space I+ is not unique and depends on a.

Assume (I−, I+) to be a regular couple. Consider the algebras A+ = A = T (V )/〈I−〉 and
A− = T (V )/〈I+〉 and associate with them two Koszul complexes

d− : A
(m)
− ⊗ A(n)

+ → A
(m+1)
− ⊗ A(n−1)

+ , d+ : A
(m)
− ⊗ A(n)

+ → A
(m−1)
− ⊗ A(n+1)

+ ,
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where we identify A
(n)
+ and I∩n

+ (resp., A
(m)
− and I∩m

− ). In [G2] these complexes associated
with a Hecke symmetry were called Koszul complexes of the first kind. Now, we want to use
them in order to define a differential and ‘partial derivatives’ on quantum matrix algebras.

Introduce a de Rham–Koszul differential dRK on the component A
(m)
− ⊗ A

(n)
+ by setting

dRK = nd− (the factor n is motivated by an analogy with the classical case). Thus, we have

dRK
(
y ⊗ xi1xi2 . . . xin

) = nyxi1 ⊗ xi2 . . . xin , y ∈ A
(m)
− , xi1 , xi2 , . . . , xin ∈ V.

In particular, if m = 0 we treat this operator to be an analog of the de Rham differential on
the algebra A+ =⊕A

(n)
+ .

Now, define braided partial derivatives on this algebra in the standard way. If f ∈ A
(n)
+

is a homogeneous element, consider its image dRK(f ) =∑i xi ⊗ fi where fi ∈ A
(n−1)
+ . Then

we introduce the braided partial derivative in xi by putting ∂xi
(f ) = fi . The differential

dRK and the braided partial derivatives can be extended on the whole algebra A+ by linearity.
Below, we use the notation ∂

j

i = ∂Li
j

for the braided derivatives in the generators of the REA.

Thus, we have ∂
j

i Ll
k = δ

j

k δ
l
i . Below we shall omit the term ‘braided’.

This way of introducing the partial derivatives on quantum algebra does not use any form
of the Leibnitz rule. Emphasize that we are only dealing with one-sided A+-modules without
transposing ‘functions’ and ‘differentials’. Instead, we apply the de Rham–Koszul differential
and the partial derivatives to elements presented in the canonical form. So, we do not need
to verify any compatibility of the differential with the defining relations of the algebras in
question. Below we use the same principle in order to define other ‘braided vector fields’.

Again, let (I−, I+) be a regular couple of subspaces of V ⊗2. Now, consider another
complex (called the Koszul complex of the second kind in [G2]). To this end we need the
space V ∗ dual to V . This means that there exists a nondegenerated pairing V ∗ ⊗ V → K. We
extend this pairing on the spaces (V ∗)⊗k and V ⊗k by the rule

〈a ⊗ b, c ⊗ d〉 = 〈b, c〉〈a, d〉, a, b ∈ V ∗, c, d ∈ V

and so on. Define the subspaces I ∗
− = (I+)

⊥ and I ∗
+ = (I−)⊥ where I⊥ ⊂ (V ∗)⊗2 stands for

the space orthogonal to I ⊂ V ⊗2. Also, we put

A∗
+ = T (V ∗)/〈I ∗

−〉 and A∗
− = T (V ∗)/〈I ∗

+ 〉.
Observe that the couple (I ∗

−, I ∗
+ ) is regular and present all elements of the algebras A+

and A∗
− in the canonical form. Now introduce a differential

d̃ : A∗
−

(m) ⊗ A(n)
+ → A∗

−
(m−1) ⊗ A(n−1)

+ , m, n � 1

via the pairing 〈 , 〉m,m+1. This means that the last factor of (A∗
−)(m) and the first factor of A

(n)
+

are coupled. It is not difficult to see that d̃2 = 0.
In what follows we consider the operator δ = nd̃ (we have renormalized the initial

differential by the same reason as above). In [G2], it was shown that the Koszul complex of
the second kind associated with a skew-invertible Hecke symmetry is acyclic for a generic
q. Hopefully, it is also so for the complexes associated with all quantum matrix algebras in
question.

In the following section, we use the both kinds of Koszul type complexes in order to
define q-analogs of wave operators.

Now, compare our definition of the derivatives on the algebra L(Rq) with that from [Me1,
Me2]. To this end, besides the operator Q (5.5) we also introduce Q′

Q′(L1̄

.⊗ L2̄) = R−1
12 L1̄

.⊗ L2̄R
−1
12 .

Then we have

I−(L) = Im(Id − Q), I+(L) = Im(Id + Q′).
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It is clear that these operators commute with each other. Also, the both operators satisfy
the quantum Yang–Baxter equation, i.e. they are braidings. Besides, the couples {Q,Q′} and
{Q′,Q} are compatible in the sense of the definition of section 3 and (Id − Q)(Id + Q′) = 0.
For such a couple of operators it is possible to apply the scheme from [M1] where some aspects
of the differential calculus on a space V endowed with a skew-invertible Hecke symmetry
were developed16. Namely, let W be a vector space such that in W⊗2 there are defined two
operators Q and Q′ satisfying the above conditions. Then the partial derivatives in the algebra
Symq(W) = T (W)/〈Im(Id − Q)〉 can be defined as follows:

∂ixj = δi
j , ∂i(xjxk) = ∂i

1(Id + Q′)(xjxk),

∂i(xjxkxl) = ∂i
1(Id + Q′

12 + Q′
12Q

′
23)(xjxkxl)

and so on. Here, {xi} is a basis of W and ∂i
1 stands for the derivative in the generator xi applied

to the first factor.
Observe that we do not assume the braidings Q and Q′ to be skew invertible. We do not

need this property since we do not transpose the derivatives and the generators xi . So, this
way of proceeding differs from the usual Leibnitz rule.

Now, by assuming W = L apply these partial derivatives to a degree n homogeneous
element f ∈ L(n)(Rq) written in the canonical form. Then we have

(Id + Q′
12 + Q′

12Q
′
23 + · · · + Q′

12Q
′
23 · · ·Q′

n−1n)(f ) = nf.

This follows from the fact that

Q′
k−1kP

(n)
+ = P (n)

+ Q′
k−1k = P (n)

+ , 2 � k � n,

where P
(n)
+ is the ‘symmetrization’ projector. Note that this relation follows from the minimal

polynomial for the operator Q′ (which can be found similarly to that for Q) and the fact that a
bigger projector ‘absorb’ a smaller one:(

P (2)
+

)
k−1k

P (n)
+ = P (n)

+

(
P (2)

+

)
k−1k

= P (n)
+ , 2 � k � n.

This implies that our definition of partial derivatives and that from [Me1] are equivalent.
Let us go again to a general space W endowed with operators Q and Q′ and define a

q-analog of the de Rham differential in the same manner. Namely, we put

d(xixj ) = (dxi)xj + (d ⊗ Id)(Q′(xixj ))

and so on. So, the space of one differentials is realized as a right module over the algebra
Symq(W). Introducing the skew-symmetric algebra∧

q
(W) = T (W)/〈Im(Id + Q′)〉

we treat the space
∧

q(W) ⊗ Symq(W) as the space of all differentials on W . An analog of
the de Rham operator on this algebra can be introduced in the same way as above.

We complete this section with the following comment. The operators Q,Q′, REnd

appeared in the early 1990s (see [MMe] and references therein). They play a very important
role in the q-analysis. In particular, each of the operators Q and Q′ enables us to introduce
the subspaces I±(L) ⊂ L⊗2 and therefore those I±(SL) ⊂ SL⊗2. However, it is not clear
whether the latter subspaces can be defined via the operator REnd.

16 Some aspects of such type calculus in a particular case related to a QG were previously considered in [WZ].
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8. q-wave operators on q-Minkowski space algebra

As we noticed in section 1 the q-Minkowski space algebra was treated in some papers as a
particular case of the REA. However, we want to slightly modify its definition in order to
make it more similar to its classical counterpart.

There exists a family of quadratic, Uq(sl(2))-covariant algebras with central time variable
t =  which are deformations of K[R4]. We get such algebras by replacing the factor q − q−1

of the central element  in the system (4.4) (with h̄ = 0) by an arbitrary multiplier α. A similar
change can be done in the algebra L(Rq) related to any skew-invertible Hecke symmetry.

Let us now set α = 0 and denote the corresponding algebra L̃(Rq). We call this algebra
the truncated REA. In a similar way we define the truncated mREA L̃(Rq, h̄). Explicitly, these
algebras are defined as follows:

L̃(Rq, h̄) = SL(Rq, h̄) ⊗ K[] and L̃(Rq) = SL(Rq) ⊗ K[].

In the following, we denote the algebra L̃(Rq) in the Uq(sl(2)) case as Kq[R4] and consider
it to be the q-Minkowski space algebra. Also, we put Kq[R3] = Kq[R4]/〈〉.

Thus, we have L̃(Rq) = T (L)/〈Ĩ−〉 where

Ĩ− = I− ⊕ span( ⊗ b − b ⊗ ,  ⊗ h − h ⊗ ,  ⊗ c − c ⊗ ) ⊂ L⊗2

and I− = I−(q) is the subspace spanned by the left-hand side of (4.5). More explicitly,
Kq[R4] is generated by four generators {, h, b, c} subject to the relations

q2hb − bh = 0, q2ch − hc = 0, 2qq(bc − cb) + (q2 − 1)h2 = 0,

f = f , ∀f ∈ span(b, h, c).

Besides, consider the subspace

Ĩ + = I+ ⊕ span( ⊗ b + b ⊗ ,  ⊗ h + h ⊗ ,  ⊗ c + c ⊗ ,  ⊗ ) ⊂ L⊗2,

where I+ = I+(q) = V0 ⊕ V2 (see (7.6)).
Note that regularity of the couple (I−, I+) entails the same property for (Ĩ−, Ĩ +).

Therefore, we can apply the scheme of the previous section to the algebras Kq[R4] and∧̃
q(L) = T (L)/〈Ĩ +〉 and define the partial derivatives ∂

j

i on the algebra Kq[R4].
Also, we need the R-invariant pairing on the space L. Such a pairing can be defined by

the formula

〈 , 〉 : L⊗2 → K,
〈
L

j

i , L
l
k

〉 = δl
iB

j

k , (8.1)

where the operator B was introduced in (3.4). So, the space L can be identified with its dual.
However, such a pairing is not unique. It becomes unique (up to a factor) being restricted

to the space SL. In the standard case the pairing SL ⊗ SL → K can be chosen with the
following normalization:

〈b, c〉 = q−1, 〈h, h〉 = 2q, 〈c, b〉 = q (8.2)

(all other terms are trivial). Let us extend this pairing to the space L by putting

〈, 〉 = ε−1, 〈, f 〉 = 〈f, 〉 = 0 ∀f ∈ SL, ε ∈ K, ε �= 0. (8.3)

This is the most general form of a nondegenerated Uq(sl(2))-invariant pairing on the space L.
Then one can extend this pairing to the spacesSL⊗k⊗SL⊗k, k � 2 as was explained in the

previous section. The following proposition can be proved by straightforward computations.

Proposition 20. The spaces I− and I+ are orthogonal to each other with respect to the pairing
(8.2). It is also true for the spaces Ĩ− and Ĩ + and the pairing (8.2)–(8.3).
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For the extended pairing we keep the same notation.

Definition 21. We say that a triple (I−, I+ ⊂ V ⊗2, 〈 , 〉 : V ⊗2 → K) is regular if the couple
(I−, I+) is regular and the subspaces I− and I+ are orthogonal to each other with respect to
the pairing 〈 , 〉.

So, proposition 20 states that the above triples are regular. This property enables us to
identify the algebra A− and that A∗

− in notations of the previous section and consequently

to consider the differentials dRK and δ as acting on the same terms A−(m) ⊗ A
(n)
+ . Thus, the

operator

δdRK : A−(m) ⊗ A(n)
+ → A−(m) ⊗ A(n−2)

+

is well defined.
Also, this property of the subspaces Ĩ− and Ĩ + enables us to compute the commutation

relations between the partial derivatives ∂, ∂h, ∂b, ∂c acting on the algebra Kq[R4]. To this
end we consider another basis {D,Dc,Dh,Db} in the space spanned by these derivatives.
Namely, we put

D = ∂, Dc = q∂b, Dh = 2q∂h, Db = q−1∂c.

Note that this basis is more convenient to deal with since the map b → Db, h → Dh, c →
Dc,  → D is R-invariant whereas that b → ∂b, . . . is not. Explicitly, these operators are
defined via the pairing:

Db(f ) = n〈b, f 〉12, if f ∈ L(n)(Rq) and so on,

where the subscript means that the pairing with b is applied to the first factor of an element f .
The next proposition is a straightforward corollary of proposition 20.

Proposition 22. The derivative D commutes with Dc,Dh,Db. The derivatives Dc,Dh and
Db satisfy the relations

q2DhDb − DbDh = 0

2qq(DbDc − DcDb) + (q2 − 1)DhDh = 0 (8.4)

q2DcDh − DhDc = 0.

Otherwise stated, the map τ : b → Db, h → Dh, c → Dc,  → D is a representation of the
algebra Kq[R4].

This proposition entails that the operators

�
Kq [R3] = q−1DbDc +

D2
h

2q

+ qDcDb = q−1∂c∂b + 2q∂
2
h + q∂b∂c, (8.5)

�
Kq [R4] = εD2

 + q−1DbDc +
D2

h

2q

+ qDcDb = ε∂2
 + q−1∂c∂b + 2q∂

2
h + q∂b∂c (8.6)

are central. Here, ε is an arbitrary non-trivial factor. We call them q-Laplace operators on
the algebras Kq[R3] and Kq[R4], respectively. Thus, our q-Laplace operator on the algebra
Kq[R4] depends on ε.

Note that these operators are obtained from the quadratic central elements in the algebra
Kq[R3] and Kq[R4] respectively in which we replaced the generators by the corresponding
derivatives: b → Db and so on.
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Now, we pass to constructing q-Dirac operators on the algebras Kq[R3], Kq[R4] and the
q-hyperboloid algebra Kq[H 2]. All of these operators can be defined via a universal scheme
making use of the split Casimir elements. Note that this scheme is similar to that from [GLS2]
where a way of relating the REA Cayley–Hamilton identities and the split Casimir elements
was suggested.

We begin with classical algebras. First, consider the sl(2) split Casimir element

b ⊗ c +
h ⊗ h

2
+ c ⊗ b ∈ sl(2) ⊗ sl(2).

Let π be the spin 1
2 representation of the algebra sl(2) in the standard basis. Applying this

representation to the right factors of the split Casimir and the map τ (with q = 1) defined in
proposition 22 to the left factors we convert the split Casimir element into the 2 × 2 matrix.
Its transposed matrix reads

Db

(
0 1
0 0

)
+

1

2
Dh

(
1 0
0 −1

)
+ Dc

(
0 0
1 0

)
=
(Dh

2 Db

Dc −Dh

2

)
. (8.7)

It can be treated as the Dirac operator on the space R
3 ∼= sl(2)∗. It is easy to see that the

square of this matrix is(
D2

h

4
+ DbDc

)
Id = (∂2

h + ∂b∂c

)
Id.

In order to get a similar operator on the space R
3 ∼= so(3)∗ equipped with the Euclidean

coordinates

x = i(b + c)

2
, y = c − b

2
, z = i(a − d)

2
we proceed in a similar way with the so(3) split Casimir element −2i(x ⊗ x + y ⊗ y + z ⊗ z)
(all numerical factors are introduced for our convenience). Then we arrive to the operator

∂x

(
0 1
1 0

)
+ ∂y

(
0 −i
i 0

)
+ ∂z

(
1 0
0 −1

)
=
(

∂z ∂x − i∂y

∂x + i∂y −∂z

)
. (8.8)

Being squared it equals
(
∂2
x + ∂2

y + ∂2
z

)
Id.

A passage to the four-dimensional Minkowski space can be done in the usual way (see
formula (8.16)).

To obtain the Dirac operator on the sphere S2 of the radius r = 1 we replace the partial
derivatives in (8.8) by the infinitesimal rotations

X = z∂y − y∂z, Y = x∂z − z∂x, Z = y∂x − x∂y.

Thus, we get the operator

DirK[S2] =
(

Z X − iY
X + iY −Z

)
.

It satisfies the equation

Dir2
K[S2] = i DirK[S2] + (X2 + Y 2 + Z2) Id.

In a similar way, on replacing the derivatives Db,Dh,Dc in (8.7) by the hyperbolic
infinitesimal rotations

B = −2b∂h + h∂c, H = 2b∂b − 2c∂c, C = −h∂b + 2c∂h

we can introduce the Dirac operator on a hyperboloid (see formula (8.15)).
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Now, we are going to use the same scheme for the braided split Casimir

q−1b ⊗ c +
h ⊗ h

2q

+ qc ⊗ b ∈ SL ⊗ SL.

Applying the representation (4.7) to the right factors in this split Casimir we get a matrix
whose transposed form coincides with the matrix (6.3) (up to a numerical multiplier). So, by
definition, the q-Dirac operator on the algebra Kq[R3] is the matrix (6.3) where we assume
that h̄ = 0 and replace the left factors b, h, c by Db,Dh,Dc respectively (i.e. we apply the
representation τ ). Finally, we have

Dir
Kq [R3] = Dbσb + Dhσh + Dcσc =

(
qDh

2q
Db

Dc − Dh

2qq

)
. (8.9)

Here the matrices σb, σh, σc are respectively the multipliers of b, h, c in formula (6.3).
Using the Cayley–Hamilton identity (6.4) for the matrix (6.3) (where we put h̄ = 0) we

find that

Dir2
Kq [R3]

= 1

2q

(
q−1DbDc +

1

2q

D2
h + qDcDb

)
Id.

Now, define the q-Dirac operator on the algebra Kq[R4] in the usual way by setting

Dir
Kq [R4] = εD

(
02 I2

I2 02

)
+ Db

(
σb 02

02 −σb

)
+ Dh

(
σh 02

02 −σh

)
+ Dc

(
σc 02

02 −σc

)
, (8.10)

where 02 and I2 are respectively the trivial and unit 2 × 2 matrices.
It is easy to see that

Dir2
Kq [R4]

=
(

ε2D2
 +

1

2q

(
q−1DbDc +

1

2q

D2
h + qDcDb

))
Id. (8.11)

In order to introduce a q-Dirac operator on the q-hyperboloid we need braided analogs
of the hyperbolic infinitesimal rotations. They are defined via a braided analog of the Lie
algebra sl(2). This analog can be introduced in frameworks of the general scheme discussed
in section 5. However, since the sl(2)-module sl(2)⊗2 is multiplicity free, this braided analog
can be defined in a more simple way. Let SL be the space sl(2) endowed with the action of the
QG Uq(sl(2)) deforming the classical adjoint one. There exists a unique (up to a nontrivial
factor) Uq(sl(2))-morphism

[ , ] : SL ⊗ SL → SL.

Explicitly, it is given by the following multiplication table

[b, b] = 0, [b, h] = −wb, [b, c] = w
q

2q
h, [h, b] = wq2b,

[h, h] = w(q2 − 1)h, [h, c] = −wc, [c, b] = −w
q

2q
h, [c, h] = wq2c, [c, c] = 0,

(8.12)

where w ∈ K, w �= 0 is an arbitrary factor.
The corresponding adjoint action

adx(y) = [x, y] ∀x, y ∈ SL

gives rise to three operators

Bq = ad b, Hq = ad h, Cq = ad c. (8.13)
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In the basis {b, h, c} they are represented by the following matrices:

Bq = w

⎛
⎜⎝

0 −1 0
0 0 q

2q

0 0 0

⎞
⎟⎠ Hq = w

⎛
⎝q2 0 0

0 q2 − 1 0
0 0 −1

⎞
⎠ Cq = w

⎛
⎜⎝

0 0 0
− q

2q
0 0

0 q2 0

⎞
⎟⎠ . (8.14)

Note that these operators satisfy relations (4.5) with h̄ = w(q4−q2+1)

2q
. By specializing q = 1

and w = 2 we get the adjoint representation of the Lie algebra sl(2).
Now, we want to extend the action of operators Bq,Hq and Cq to the higher components

of the algebra Kq[R3]. Such an extension can be constructed via the coproduct described in
section 4. However, we use another method which is similar to that used in the definition
of the partial derivatives. Presenting a degree n homogeneous element f ∈ Kq[R3] in the
canonical form we define the action of the extended operators as follows:

Bq(f ) = n(Bq)1(f ), Hq(f ) = n(Hq)1(f ), Cq(f ) = n(Cq)1(f ),

where as usual the subscript means that these operators are applied to the first factors. (We
keep the same notation for the extended operators.)

Note that on each homogeneous component of the algebra Kq[R3] the operators
Bq,Hq, Cq realize a representation of the algebra (4.5) but (in contrast with the classical
case) with different factors h̄. Let h̄(n) be the value of the factor h̄ on the homogeneous
component of the degree n. A proof of this fact and the computation of the values h̄(n) can be
found in [DGR].

Now, upon replacing the operators Db,Dh,Dc in (8.9) by the operators Bq,Hq, Cq ,
respectively we get the q-Dirac operator on the q-hyperboloid (more precisely, a free Kq[H 2]-
module). Namely, we have

DirKq [H 2] = Bqσb + Hqσh + Cqσc =
(

qHq

2q
Bq

Cq − Hq

2qq

)
. (8.15)

In virtue of (6.4) this operator on the degree n homogeneous component satisfies the relation

Dir2
Kq [H 2] = qh̄(n) DirKq [H 2] +

1

2q

(
q−1BqCq +

H 2
q

2q

+ CqBq

)
Id.

Now, we discuss a way of definition of a q-analog of the Maxwell operators on the
quantum algebras in question. First, consider the classical Maxwell operator

Mw(ω) = ∂dω = �(ω) − d∂(ω), where ω ∈ 	1, ∂ = ∗−1d∗,

d is the de Rham operator, and ∗ is the Hodge one. The Hodge operator is introduced via a
metric which is assumed to be (quasi)Euclidian. Identifying the differential forms

ω = dtα + dxβ + dyγ + dzδ ∈ 	(R4), α, β, γ, δ ∈ K[R4]

with the columns (α, β, γ, δ)T we can present the Maxwell operator on the Minkowski space
as follows:

Mw
K[R4]

⎛
⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

�
K[R4](α)

�
K[R4](β)

�
K[R4](γ )

�
K[R4](δ)

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

∂t

∂x

∂y

∂z

⎞
⎟⎟⎠ (∂t − ∂x,−∂y,−∂z)

⎛
⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎠ .

In a similar manner we can realize the Maxwell operator on the Euclidian spaces R
3 ∼= so(3)∗

and R
3 ∼= sl(2)∗ (see [DG] for detail).

45



J. Phys. A: Math. Theor. 42 (2009) 313001 Topical Review

Now, introduce q-analogs of the Maxwell operators on the algebras Kq[R3] and Kq[R4]
respectively by the relations

Mw
Kq [R3]

⎛
⎝α

β

γ

⎞
⎠ =

⎛
⎜⎝

�
Kq [R3](α)

�
Kq [R3](β)

�
Kq [R3](γ )

⎞
⎟⎠−
⎛
⎝∂b

∂h

∂c

⎞
⎠ (q−1∂c, 2q∂h, q∂b)

⎛
⎝α

β

γ

⎞
⎠

Mw
Kq [R4]

⎛
⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

�
Kq [R4](α)

�
Kq [R4](β)

�
Kq [R4](γ )

�
Kq [R4](δ)

⎞
⎟⎟⎟⎠−

⎛
⎜⎜⎝

∂b

∂h

∂c

∂

⎞
⎟⎟⎠ (q−1∂c, 2q∂h, q∂b, ε∂)

⎛
⎜⎜⎝

α

β

γ

δ

⎞
⎟⎟⎠ ,

(8.16)

where α, β, γ ∈ Kq[R3] (resp., α, β, γ, δ ∈ Kq[R4]) and the operator �
Kq [R3] (resp., �

Kq [R4])
is defined by formula (8.5) (resp., (8.6)).

The basic property of these operators is that their kernels are similar to those of the classical
Maxwell operators. Namely, the kernel of the operator Mw

Kq[R3] (resp., Mw
Kq[R4]) contains

all columns of the form (∂bϕ, ∂hϕ, ∂cϕ)T (resp., (∂bϕ, ∂hϕ, ∂cϕ, ∂ϕ)T). This property is a
consequence of the fact that the q-Laplace operators are central in the corresponding algebras.

In order to get the q-Maxwell operator on the q-hyperboloid algebra we present the
partial derivatives in a form similar to that expressing the classical operators in the spherical
coordinates. We do not know any quantum analogs of the angle variables, but instead we use
the tangent braided vector fields which are analogs of the infinitesimal hyperbolic rotations.
First, consider the space R

3 ∼= so(3)∗. Let us present the partial derivatives in the Euclidean
variables x, y, z as follows:

∂x = yZ − zY

r2
+

x

r
∂r = yZ − zY

ρ
+ 2x∂ρ, (c.p. → ∂y, ∂z), (8.17)

where ρ = r2 = (x2 + y2 + z2) and c.p. stands for the cyclic permutations x → y → z → x.
Here, instead of the derivatives in the angles we use the vector fields X, Y,Z tangent to

all spheres S2
r = {(x, y, z)|x2 + y2 + z2 = r2}. These tangent fields are bound by the relation

xX + yY + zZ = 0. (8.18)

Besides, they commute with the derivatives ∂r and ∂ρ . Note that the derivative ∂ρ acts on the
Cartesian variables x, y, z as follows:

∂ρx = x

2ρ
, ∂ρy = y

2ρ
, ∂ρz = z

2ρ
. (8.19)

In terms of the vector fields X, Y,Z and the derivative ∂ρ the Laplace operator on R
3

takes the following form:

�
K[R3] = ∂2

x + ∂2
y + ∂2

z = X2 + Y 2 + Z2

ρ
+ 6∂ρ + 4ρ∂2

ρ . (8.20)

Taking into consideration this formula, it is reasonable to extend the algebra K[R4] by
the element ρ−1 (and to proceed in a similar way with the other algebras considered below).
For detail we refer the reader to [GS3].

In a similar way, we can proceed while dealing with R
3 ∼= sl(2)∗ endowed with a

sl(2)-invariant metric. Then, using the hyperbolic infinitesimal rotations

B = −2b∂h + h∂c, H = 2b∂b − 2c∂c, C = −h∂b + 2c∂h

we can present the derivatives ∂b, ∂h and ∂c in a form similar to (8.17) (see formula (8.22) for
q = 1).
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Note that the operators B,H,C are not independent but are bound by a relation analogous
to (8.18)

bC +
hH

2
+ cB = 0.

A similar statement is valid for the braided vector fields Bq,Hq and Cq acting on the
algebra Kq[R3].

Proposition 23. The operators Bq,Hq and Cq obey the relation

q−1bCq +
hHq

2q

+ qcBq = 0. (8.21)

Proof. It suffices to check this relation on the generators of the algebra Kq[R3]. Taking
into consideration our method of prolongation of the operators Bq,Hq and Cq to the higher
components we can conclude that it remains true on the whole algebra Kq[R3]. �

Note that relation (8.21) is independent on the normalization of the operators Bq,Cq and
Hq on the higher homogeneous components of the algebra Kq[R3].

All combinations αBq + βHq + γCq where α, β, γ ∈ Kq[R3] are called the braided
tangent vector fields. The space of such fields is a left Kq[R3]-module

M = Kq[R3]⊕3/M, where M =
{
ϕ

(
q−1bCq +

hHq

2q

+ qcBq

)∣∣∣∣∀ϕ ∈ Kq[R3]

}
.

On any q-hyperboloid algebra Kq[H 2] the modules M and M are projective. The module M
is similar to

∧1
q(H

2) though one of them is the right module and the other is the left one.
Also, we need the following q-analog of the variable ρ. We put

ρq = 1

2q

(
q−1bc +

h2

2q

+ qcb

)
.

In analogy with the classical formulae, we introduce the derivative ∂ρq
setting by definition

∂ρq
b = b

2ρq

, ∂ρq
h = h

2ρq

, ∂ρq
c = c

2ρq

.

In addition, we assume that the derivative ∂ρq
is subject to the usual Leibnitz rule. It is easy

to see that this way of introducing the derivative ∂ρq
is compatible with the defining relations

of the algebra Kq[R3]. Note that we impose the Leibnitz rule only on the derivative in a
central element. However, here we can also do without this rule by applying the method
above. Namely, assuming f ∈ Kq[R3] to be a homogeneous element of degree n we apply
this derivative to its first factor and multiply the result by n.

Proposition 24. The following operator equalities are valid on the algebra Kq[R3]:

Db = q−2

2qρq

Bq +
2b

2q

∂ρq
, Dh = q−2

2qρq

Hq +
2h

2q

∂ρq
, Dc = q−2

2qρq

Cq +
2c

2q

∂ρq
, (8.22)

where Bq = q2hBq − bHq,Hq = q2q(bCq − cBq) + (q2 − 1)hHq, Cq = q2cHq − hCq and
in definition (8.13)—(8.12) of the operators Bq,Hq, Cq we put w = 1.

Analogously to the previous proposition it suffices to check these relations on the
generators of the algebra Kq[R3]. We call relations (8.22) the pseudospherical form of
the derivatives Db,Dh and Dc.
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Now, define the q-Laplace operator on the q-hyperboloid with ρq = q−22q by

�Kq [H 2] = q−1BqCq +
1

2q

H2
q + qCqBq

and the q-Maxwell operator by

MwKq[H2]

⎛
⎝α

β

γ

⎞
⎠ = e′

⎛
⎜⎝
⎛
⎝�Kq [H 2](α)

�Kq [H 2](β)

�Kq [H 2](γ )

⎞
⎠−

⎛
⎜⎝

q−1Cq
Hq

2q

qBq

⎞
⎟⎠ (Bq,Hq, Cq)

⎛
⎝α

β

γ

⎞
⎠
⎞
⎟⎠ ,

where (α, β, γ )T ∈ e′
Kq[H ]⊕3, e′ = 1 − ē′ and ē′ is defined by (6.6).

This method of defining the q-Laplace and the q-Maxwell operators on the q-hyperboloid
algebra was suggested in [DG]. It is motivated by the classical case, where on a subvariety of
an affine space these operators are restrictions of similar operators on the ambient space (see
[DG] for detail).
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